A Switching Lemma for DNFs over F,:
the Canonical Decision Tree Approach

Abstract

We prove a switching lemma for DNFs over F,, via the canonical decision tree (CDT) method
of Razborov, obtaining the M-independent bound

Pr[DT(f,) > ] < GWZY

for any width-w DNF f with any number of terms M, where p is a random restriction keeping
each variable alive with probability q. The key observation is that the p-ary branching of the
CDT over F), is effectively binary: all p — 1 nonzero branches lead to the same continuation, so
the encoding requires only 2w (not pw) bits per step. For p = 2 this recovers the classical bound

wq/(1 — q))*. As a corollary, depth-d circuits over F,, computing generalized parity require
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1 Introduction

Hastad’s switching lemma [I] is the cornerstone of AC? lower bounds. For a width-w CNF or
DNF f on {0,1}" and a random restriction p, keeping each variable alive with probability ¢:

Pr[DT(f],) > s] < (Cwq)®,

where C is an absolute constant and DT denotes decision tree depth. Two features are essential:
the bound controls DT depth (not merely certificate complexity), and it is independent of the
number of clauses M.

Extending this to I, is nontrivial. Over Zj (for a prime p), a literal is ¢;(z) = 1[z; # 0],
and random restrictions assign each variable to: alive with probability ¢, or dead with a uniform
value in {0,...,p — 1} with probability (1 — ¢)/p each. The recent work [6] proved the single-gate
switching lemma (CpgK/s)® for fan-in K gates, which already yields tight AC? lower bounds.

In this note we prove the full M-independent DNF/CNF switching lemma over F,, adapting
Razborov’s canonical decision tree proof [2] [3].

Theorem 1 (Main). Let f =T1V---V Ty be a width-w DNF over Fy) (each term Tj =
with |S;| <w). For p ~ pg:
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An identical bound holds for width-w CNFs by duality.

For p = 2 and small ¢, this gives (4wq)®, recovering the classical bound.

Remark 2 (Comparison with Boolean). In the Boolean case (p = 2), the constant in the switching
lemma is C' ~ 4-7 depending on the proof method. Our proof gives C), = 2p; for p = 2 this is
C = 4, matching Razborov’s original argument. Whether C), can be improved to O(1) independent
of p is an interesting open question.



2 Setup

2.1 Literals and formulas over F,

We work over Zj for a prime p. A literal is £;(z) = 1[x; # 0]. A width-w DNFis f =TiV---V Ty
where each term is T = A\, s, ti with |Sj| < w. Term T; evaluates to 1 iff all variables in S; are
nonzero.

2.2 Random restrictions
A random restriction p ~ pgy independently sets each variable z; to:
e alive (denoted ) with probability g;
e dead with value v € {0,...,p — 1} with probability (1 — ¢q)/p each.

We write A(p) for the set of alive variables and o(p) for the dead assignment.

2.3 Effect on terms
Under restriction p, a term T} is:
e falsified: some variable in S is dead with value 0;
o fully satisfied: every variable in S; is dead with a nonzero value;
e active: no variable in S is dead-0, and at least one variable is alive.

The restricted function f|, depends only on the alive variables.

3 The canonical decision tree over [,

Definition 3 (CDT for DNFs). Given a width-w DNF f =TV ---V Ty and a restriction p, the
canonical decision tree T(f|,) is defined recursively:

1. If some term T; is fully satisfied under p: output 1 (leaf, depth 0).

2. Otherwise, let T; be the first active term (smallest j). Query the smallest-index alive variable
x; € Sj.
e Branch z; = 0: term Tj is falsified (as are all other terms containing z;). Recurse on
fly where p' extends p by setting x; = 0.

e Branch x; # 0: literal {; is satisfied. Recurse on f|y where p' extends p by setting
x; = 1 (any nonzero value).

3. If no active term exists (all terms falsified): output O (leaf, depth 0).
The depth DT(f|,) is the depth of T(f,)-

Proposition 4 (Binary effective branching). In the CDT, the subtrees rooted at branches x; = v
forv=1,2,...,p—1 are all identical. Hence the CDT is effectively a binary tree.

Proof. The CDT state depends only on which terms are active and which variables are alive. For
a variable x; in active term 7}:



e Value 0: T becomes falsified.

e Any value v # 0: literal ¢; = 1[z; # 0] becomes 1. Term T either becomes satisfied (if x; was
the last alive variable) or continues with one fewer alive variable. The effect is the same for

all v # 0. O

4 Proof of Theorem [1]

We adapt Razborov’s encoding argument [2, [3].

Bad restrictions. Let BAD, = {p : DT(f|,) > s}. For p € BAD,, there exists a root-to-node
path in 7(f|,) of depth s.

Extracting a path. Fix p € BAD,. By Proposition [4] the CDT is an effectively binary tree.
Choose the lexicographically first (left-first) path of depth s in the CDT. This path queries variables
Ty ooy Ty, 0 terms Ty, ..., Ty, , with branch indicators by,...,bs € {0,1} (where 0 = “value is
0” and 1 = “value is nonzero”).

Injection. Define ®(p) = (p, 7) where:
e p agrees with p except each z,, is set to dead with value 1 (instead of alive).

e The encoding is 7 = (k1,b1,...,ks,bs), where k; = pos(xy,;,Sa;) € {0,...,w — 1} is the
position of x,, within term T, (in sorted order).

Preservation of falsified terms. We kill to value 1 (nonzero). This does not falsify any term,
since falsification requires a dead variable with value 0. Formally: for any term 7}, if T} is falsified
under p (has some dead variable with value 0), then T is still falsified under p (the same dead-0
variable persists). Conversely, if T} is not falsified under p, the only change is that some alive
variables become dead-1, which does not create any dead-0 variable.

Hence: the set of falsified terms is identical under p and p.

Injectivity. Given (p, T), we reconstruct p iteratively:

1. Initialize p := p. Let Fy be the set of base-falsified terms (those with a dead-0 variable
under p). Initialize the CDT-falsified set F := Fy and a pointer to the first non-falsified
term.

2. Fori=1,...,s:

(a) Determine the current term. Let T,, be the first term (smallest index) not in F.

(b) Identify the variable. The k;-th variable (sorted order) in Ty, is x,,. This variable is
currently dead with value 1 in p.

(c) Revive. Set p(x,,) := * (alive).

(d) Update CDT-falsified set. If b; = 0 (zero branch), add to F every term T containing z,,.
If b; = 1 (nonzero branch), F is unchanged and we remain at term 7T, (the next step
will continue querying this term unless it becomes fully satisfied).

3. Output p.

This procedure is well-defined because:



e Step 2(a): the base-falsified set Fy is identical under p and p, since we only change dead-1
to alive (never creating or removing dead-0 variables). The CDT-falsified terms added in
step 2(d) exactly mirror the CDT’s own state: on the original p, querying z,, and branching
xy; = 0 falsifies every term containing z,,, not just the current one.

e Step 2(b): the variable at position k; in the current term is dead-1 (it was set to dead-1 by
the forward map and has not been revived in a previous step, since the CDT queries each
variable at most once).

Since the procedure uniquely determines p from (p,7), the map ® is injective on each fiber
BAD, := {p € BAD; : ®(p) has encoding 7}.
Encoding count.
{7} < (w)*,
since each step contributes w choices for the position k; and 2 choices for the branch b;. Crucially,

b; records only “zero vs. nonzero” (not the specific nonzero value), which suffices by Proposition

Probability ratio. Each z,, changes from alive (probability ¢) to dead with value 1 (probabil-
ity (1-q)/p):

Pr[]:ﬁ q :< P >S
Pr(p A-q/p \1-q/°

i=1

i)

Combining.

PrBAD,] = Y Pr[BAD,] =) > Prfg]

T peBAD,
g o (=)
e () - () - (2

5 ACY lower bound

Corollary 5. For any prime p and constant depth d > 2, any depth-d circuit over F,, computing
PAR,(z) = 1], 2; Z 0 (mod p)] has size exp(Q,(n!/(4=1)).

Proof. The argument is standard. Let C' be a depth-d circuit of size S with bottom fan-in w. Apply
d — 1 rounds of random restrictions with ¢ = ¢/(pw) for a small constant c.
At each round, every bottom gate (a width-w DNF or CNF) satisfies

Pr[DT > s] < (2pwq/(1 - q))* = (2¢/(1 = q))° < (3¢)°
for small ¢. Setting s = [C"In S] for large C’, this is < 1/5%. By a union bound over S gates, all
gates simplify to DT depth < s with positive probability.
Each gate is replaced by its depth-s decision tree expansion, reducing the circuit depth by 1
and setting the new bottom fan-in to s = O(In S). After d — 1 rounds:

d—1
, n
me=n Zl_Il @ = (Cp)d=1.w- (InS)d—2

alive variables survive. For PAR, to remain non-constant, we need n’ > 1, giving w - (In $)4-2 <
n/(Cp)¥'. Since w < S, this forces S > exp(Q,(n!/(@=1)). O



6 Discussion

6.1 The key observation: binary effective branching

The CDT for a DNF over [F), branches p ways at each query, but p—1 of these branches are identical
(all nonzero values have the same effect on clause satisfaction). This is the crucial observation: the
encoding needs only 1 bit per step to specify the branch (zero vs. nonzero), rather than log, p bits.

In contrast, for more general “IF,-valued” gate types (e.g., functions that distinguish between
different nonzero values), the p-ary branching would be genuinely p-ary, and the encoding would

S

require log, p bits per step. This would give a bound of (p?wq/(1 — q))*.

6.2 Killing to value 1

The choice to kill staircase variables to dead-1 (any fixed nonzero value) is essential. Killing to
value 0 (as in the injection of [7]) preserves the set of surviving clauses, but the CDT structure
changes because the active terms differ. Killing to a nonzero value preserves the set of falsified
terms (since falsification requires a dead-0 variable), which is what the CDT-based inverse needs.

6.3 Open problems

1. Optimal constant. Our bound gives C, = 2p. For p = 2, this is C» = 4, matching
Razborov’s proof. Can C), be made O(1)? In the Boolean case, Razborov’s bound of 4 is not
tight; improved bounds give Cy < 7/2 [4]. The correct constant over F, is likely O(p) since
the probability ratio pg/(1 — q) inherently involves p.

2. Projections and depth hierarchy. RST [5] extended the switching lemma to random
projections to prove average-case depth hierarchy for the Boolean PH relative to a random
oracle. Extending this to IF,, would give analogous results for F,-valued computation models.

3. ACCY. Our switching lemma handles AND/OR gates over F,. The frontier of AC?-style
lower bounds is ACC (circuits with MOD,,, gates). Connecting the F,, framework to ACC®
lower bounds remains a major open problem.
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