
A Switching Lemma for DNFs over Fp:

the Canonical Decision Tree Approach

Abstract

We prove a switching lemma for DNFs over Fp via the canonical decision tree (CDT) method
of Razborov, obtaining the M -independent bound

Pr[DT(f |ρ) ≥ s] ≤
(
2pwq

1− q

)s

for any width-w DNF f with any number of terms M , where ρ is a random restriction keeping
each variable alive with probability q. The key observation is that the p-ary branching of the
CDT over Fp is effectively binary: all p− 1 nonzero branches lead to the same continuation, so
the encoding requires only 2w (not pw) bits per step. For p = 2 this recovers the classical bound
(4wq/(1 − q))s. As a corollary, depth-d circuits over Fp computing generalized parity require
size exp(Ωp(n

1/(d−1))).

1 Introduction

H̊astad’s switching lemma [1] is the cornerstone of AC0 lower bounds. For a width-w CNF or
DNF f on {0, 1}n and a random restriction ρq keeping each variable alive with probability q:

Pr[DT(f |ρ) ≥ s] ≤ (Cwq)s,

where C is an absolute constant and DT denotes decision tree depth. Two features are essential:
the bound controls DT depth (not merely certificate complexity), and it is independent of the
number of clauses M .

Extending this to Fp is nontrivial. Over Zn
p (for a prime p), a literal is ℓi(x) = 1[xi ̸= 0],

and random restrictions assign each variable to: alive with probability q, or dead with a uniform
value in {0, . . . , p− 1} with probability (1− q)/p each. The recent work [6] proved the single-gate
switching lemma (CpqK/s)s for fan-in K gates, which already yields tight AC0 lower bounds.

In this note we prove the full M -independent DNF/CNF switching lemma over Fp, adapting
Razborov’s canonical decision tree proof [2, 3].

Theorem 1 (Main). Let f = T1 ∨ · · · ∨ TM be a width-w DNF over Fn
p (each term Tj =

∧
i∈Sj

ℓi
with |Sj | ≤ w). For ρ ∼ ρq:

Pr[DT(f |ρ) ≥ s] ≤
(
2pwq

1− q

)s

.

An identical bound holds for width-w CNFs by duality.

For p = 2 and small q, this gives (4wq)s, recovering the classical bound.

Remark 2 (Comparison with Boolean). In the Boolean case (p = 2), the constant in the switching
lemma is C ≈ 4–7 depending on the proof method. Our proof gives Cp = 2p; for p = 2 this is
C2 = 4, matching Razborov’s original argument. Whether Cp can be improved to O(1) independent
of p is an interesting open question.

1

2 Setup

2.1 Literals and formulas over Fp

We work over Zn
p for a prime p. A literal is ℓi(x) = 1[xi ̸= 0]. A width-w DNF is f = T1 ∨ · · · ∨TM

where each term is Tj =
∧

i∈Sj
ℓi with |Sj | ≤ w. Term Tj evaluates to 1 iff all variables in Sj are

nonzero.

2.2 Random restrictions

A random restriction ρ ∼ ρq independently sets each variable xi to:

� alive (denoted ∗) with probability q;

� dead with value v ∈ {0, . . . , p− 1} with probability (1− q)/p each.

We write A(ρ) for the set of alive variables and σ(ρ) for the dead assignment.

2.3 Effect on terms

Under restriction ρ, a term Tj is:

� falsified : some variable in Sj is dead with value 0;

� fully satisfied : every variable in Sj is dead with a nonzero value;

� active: no variable in Sj is dead-0, and at least one variable is alive.

The restricted function f |ρ depends only on the alive variables.

3 The canonical decision tree over Fp

Definition 3 (CDT for DNFs). Given a width-w DNF f = T1 ∨ · · · ∨ TM and a restriction ρ, the
canonical decision tree T (f |ρ) is defined recursively:

1. If some term Tj is fully satisfied under ρ: output 1 (leaf, depth 0).

2. Otherwise, let Tj be the first active term (smallest j). Query the smallest-index alive variable
xi ∈ Sj.

� Branch xi = 0: term Tj is falsified (as are all other terms containing xi). Recurse on
f |ρ′ where ρ′ extends ρ by setting xi = 0.

� Branch xi ̸= 0: literal ℓi is satisfied. Recurse on f |ρ′ where ρ′ extends ρ by setting
xi = 1 (any nonzero value).

3. If no active term exists (all terms falsified): output 0 (leaf, depth 0).

The depth DT(f |ρ) is the depth of T (f |ρ).

Proposition 4 (Binary effective branching). In the CDT, the subtrees rooted at branches xi = v
for v = 1, 2, . . . , p− 1 are all identical. Hence the CDT is effectively a binary tree.

Proof. The CDT state depends only on which terms are active and which variables are alive. For
a variable xi in active term Tj :

2

� Value 0: Tj becomes falsified.

� Any value v ̸= 0: literal ℓi = 1[xi ̸= 0] becomes 1. Term Tj either becomes satisfied (if xi was
the last alive variable) or continues with one fewer alive variable. The effect is the same for
all v ̸= 0.

4 Proof of Theorem 1

We adapt Razborov’s encoding argument [2, 3].

Bad restrictions. Let BADs = {ρ : DT(f |ρ) ≥ s}. For ρ ∈ BADs, there exists a root-to-node
path in T (f |ρ) of depth s.

Extracting a path. Fix ρ ∈ BADs. By Proposition 4, the CDT is an effectively binary tree.
Choose the lexicographically first (left-first) path of depth s in the CDT. This path queries variables
xv1 , . . . , xvs in terms Tα1 , . . . , Tαs , with branch indicators b1, . . . , bs ∈ {0, 1} (where 0 = “value is
0” and 1 = “value is nonzero”).

Injection. Define Φ(ρ) = (ρ̃, τ) where:

� ρ̃ agrees with ρ except each xvi is set to dead with value 1 (instead of alive).

� The encoding is τ = (k1, b1, . . . , ks, bs), where ki = pos(xvi , Sαi) ∈ {0, . . . , w − 1} is the
position of xvi within term Tαi (in sorted order).

Preservation of falsified terms. We kill to value 1 (nonzero). This does not falsify any term,
since falsification requires a dead variable with value 0. Formally: for any term Tj , if Tj is falsified
under ρ (has some dead variable with value 0), then Tj is still falsified under ρ̃ (the same dead-0
variable persists). Conversely, if Tj is not falsified under ρ, the only change is that some alive
variables become dead-1, which does not create any dead-0 variable.

Hence: the set of falsified terms is identical under ρ and ρ̃.

Injectivity. Given (ρ̃, τ), we reconstruct ρ iteratively:

1. Initialize ρ := ρ̃. Let F0 be the set of base-falsified terms (those with a dead-0 variable
under ρ̃). Initialize the CDT-falsified set F := F0 and a pointer to the first non-falsified
term.

2. For i = 1, . . . , s:

(a) Determine the current term. Let Tαi be the first term (smallest index) not in F .

(b) Identify the variable. The ki-th variable (sorted order) in Tαi is xvi . This variable is
currently dead with value 1 in ρ.

(c) Revive. Set ρ(xvi) := ∗ (alive).

(d) Update CDT-falsified set. If bi = 0 (zero branch), add to F every term Tj containing xvi .
If bi = 1 (nonzero branch), F is unchanged and we remain at term Tαi (the next step
will continue querying this term unless it becomes fully satisfied).

3. Output ρ.

This procedure is well-defined because:

3

� Step 2(a): the base-falsified set F0 is identical under ρ̃ and ρ, since we only change dead-1
to alive (never creating or removing dead-0 variables). The CDT-falsified terms added in
step 2(d) exactly mirror the CDT’s own state: on the original ρ, querying xvi and branching
xvi = 0 falsifies every term containing xvi , not just the current one.

� Step 2(b): the variable at position ki in the current term is dead-1 (it was set to dead-1 by
the forward map and has not been revived in a previous step, since the CDT queries each
variable at most once).

Since the procedure uniquely determines ρ from (ρ̃, τ), the map Φ is injective on each fiber
BADτ := {ρ ∈ BADs : Φ(ρ) has encoding τ}.
Encoding count.

|{τ}| ≤ (2w)s,

since each step contributes w choices for the position ki and 2 choices for the branch bi. Crucially,
bi records only “zero vs. nonzero” (not the specific nonzero value), which suffices by Proposition 4.

Probability ratio. Each xvi changes from alive (probability q) to dead with value 1 (probabil-
ity (1− q)/p):

Pr[ρ]

Pr[ρ̃]
=

s∏
i=1

q

(1− q)/p
=

(
pq

1− q

)s

.

Combining.

Pr[BADs] =
∑
τ

Pr[BADτ] =
∑
τ

∑
ρ∈BADτ

Pr[ρ]

=
∑
τ

∑
ρ∈BADτ

Pr[ρ̃] ·
(

pq

1− q

)s

≤
∑
τ

1 ·
(

pq

1− q

)s

= (2w)s ·
(

pq

1− q

)s

=

(
2pwq

1− q

)s

.

5 AC0 lower bound

Corollary 5. For any prime p and constant depth d ≥ 2, any depth-d circuit over Fp computing
PARp(x) = 1[

∑
i xi ̸≡ 0 (mod p)] has size exp(Ωp(n

1/(d−1))).

Proof. The argument is standard. Let C be a depth-d circuit of size S with bottom fan-in w. Apply
d− 1 rounds of random restrictions with q = c/(pw) for a small constant c.

At each round, every bottom gate (a width-w DNF or CNF) satisfies

Pr[DT ≥ s] ≤ (2pwq/(1− q))s = (2c/(1− q))s ≤ (3c)s

for small q. Setting s = ⌈C ′ lnS⌉ for large C ′, this is < 1/S2. By a union bound over S gates, all
gates simplify to DT depth ≤ s with positive probability.

Each gate is replaced by its depth-s decision tree expansion, reducing the circuit depth by 1
and setting the new bottom fan-in to s = O(lnS). After d− 1 rounds:

n′ = n ·
d−1∏
i=1

qi ≥
n

(Cp)d−1 · w · (lnS)d−2

alive variables survive. For PARp to remain non-constant, we need n′ ≥ 1, giving w · (lnS)d−2 ≤
n/(Cp)d−1. Since w ≤ S, this forces S ≥ exp(Ωp(n

1/(d−1))).

4

6 Discussion

6.1 The key observation: binary effective branching

The CDT for a DNF over Fp branches p ways at each query, but p−1 of these branches are identical
(all nonzero values have the same effect on clause satisfaction). This is the crucial observation: the
encoding needs only 1 bit per step to specify the branch (zero vs. nonzero), rather than log2 p bits.

In contrast, for more general “Fp-valued” gate types (e.g., functions that distinguish between
different nonzero values), the p-ary branching would be genuinely p-ary, and the encoding would
require log2 p bits per step. This would give a bound of (p2wq/(1− q))s.

6.2 Killing to value 1

The choice to kill staircase variables to dead-1 (any fixed nonzero value) is essential. Killing to
value 0 (as in the injection of [7]) preserves the set of surviving clauses, but the CDT structure
changes because the active terms differ. Killing to a nonzero value preserves the set of falsified
terms (since falsification requires a dead-0 variable), which is what the CDT-based inverse needs.

6.3 Open problems

1. Optimal constant. Our bound gives Cp = 2p. For p = 2, this is C2 = 4, matching
Razborov’s proof. Can Cp be made O(1)? In the Boolean case, Razborov’s bound of 4 is not
tight; improved bounds give C2 ≤ 7/2 [4]. The correct constant over Fp is likely O(p) since
the probability ratio pq/(1− q) inherently involves p.

2. Projections and depth hierarchy. RST [5] extended the switching lemma to random
projections to prove average-case depth hierarchy for the Boolean PH relative to a random
oracle. Extending this to Fp would give analogous results for Fp-valued computation models.

3. ACC0. Our switching lemma handles AND/OR gates over Fp. The frontier of AC0-style
lower bounds is ACC0 (circuits with MODm gates). Connecting the Fp framework to ACC0

lower bounds remains a major open problem.

References

[1] J. H̊astad, Almost optimal lower bounds for small depth circuits, in Proc. 18th STOC, pp. 6–20,
1986.

[2] A. Razborov, Personal communication; see Beame [3] for exposition.

[3] P. Beame, A switching lemma primer, Technical Report UW-CSE-95-07-01, University of Wash-
ington, 1994.

[4] P. Beame, Improved switching lemma bounds, unpublished.

[5] B. Rossman, R. A. Servedio, L.-Y. Tan, An average-case depth hierarchy theorem for Boolean
circuits, in Proc. 56th FOCS, pp. 1030–1048, 2015.

[6] Y. Wang, A Fourier-analytic switching lemma over Fp and the AC0 lower bound for generalized
parity, ECCC Report TR26-014, 2026.

[7] Y. Wang, Switching lemmas over Fp and tight AC0 lower bounds, Preprint, 2026.

5

	Introduction
	Setup
	Literals and formulas over Fp
	Random restrictions
	Effect on terms

	The canonical decision tree over Fp
	Proof of Theorem 1
	AC0 lower bound
	Discussion
	The key observation: binary effective branching
	Killing to value 1
	Open problems

