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Abstract

We determine the gate complexity ¢(p, ¢, n) — the minimum number of compositions of affine
maps Fj — F, with arbitrary functions F; — F,, needed to represent the indicator function of
the algebraic torus (]F;)” as an F,-linear combination — for all primes p and prime powers ¢
with char(F,) # p. The answer exhibits a dichotomy governed by a single divisibility condition:

(=1t ifpl(g—1),
t(p,q,n) = n _
) T itpta-1).

When p | (¢ — 1), the Fx-Fourier transform of 17 is supported on the torus 7', and the optimal
construction uses (¢ —1)"~! gates indexed by (F;)"~'. When p { (¢ — 1), the Fourier transform
has full support on F7'\ {0}, and the optimal construction requires one gate per point of P*~*(F,).
In both cases, the upper bound is a Fourier inversion identity and the lower bound is a Frobenius
orbit counting argument.

1 Introduction

In [1], the gate complexity (2, q,n) = (¢—1)""! was determined for all odd prime powers ¢q. There,
the key tools were the self-duality f;; = 17 over Fyx and an orbit counting argument exploiting the
Frobenius a — 2a.

In this companion paper, we extend the result to all primes p, revealing a dichotomy that was
invisible in the p = 2 case. When p = 2, ¢ — 1 is always even, so p | (¢ — 1) holds automatically.
For general p, the Fourier support of 17 over F,. depends on whether ¢ —1 =0 (mod p):

e If p| (¢ —1): the per-coordinate factor ¢ — 1 vanishes in Fx, giving Supp(i;) =T.

o If pt(q—1): the factor ¢ — 1 is invertible, giving supp(17) = Iy \ {0}

The orbit counting lower bound reflects this: in the first case, only torus orbits need covering; in
the second, all of (IFj\ {0}) does. The upper bound in both cases comes from a unified construction
via Fourier inversion decomposed over projective lines.

Main result

Theorem 1.1. Let p be a prime and q a prime power with char(F,) # p. Then
(¢ -1 ifp|(g—1),

t(p,g,n) = q gn —
(P, q,n) qQ_11:|P”—1(]Fq)| ifpt(g—1).




For p = 2, the condition 2 | (¢ — 1) holds for all odd g, recovering the result of [I]. The case
q=2(s0oq—1=1,pf1 forall p > 3) gives t(p,2,n) = 2" — 1 = [P"~1(Fy)|, also matching [I].

2 Setup

We briefly recall the framework from [I]. Let T' = (F;)" denote the algebraic torus and Z = Fy \ T
the boundary. A (p,q)-gate is a function g o £: Fj — F, where {(z) = a -z + b is affine and
g: Fy — T, is arbitrary. The gate complexity ¢(p, ¢,n) is the minimum w such that

as functions IF;‘ — Fp.

3 The IFpk—Fourier Transform

Let 7 = char(F,) and k = ord,(p), the multiplicative order of p in F%. Since r | p¥ — 1, the field F
contains a primitive rth root of unity (. Define the additive character

X: Fg = Fp, X(x) = (T,

where Tr: Fy — F, is the field trace. The F,.-Fourier transform of f: Fy — F is

fla)="3" fla)x(~a- ).

xEIF{;

Since Fp C Fpx, any function f: Fy — [, has a well-defined Fx-Fourier transform. The
Frobenius o: o + 2P acts on Fx with order k, and for F)-valued f:

A~ A~

f(pa) = f(a)”. (1)
In particular, f(a) # 0 if and only if f(pa) # 0, so the Fourier support is a union of orbits under
a > pa.
4 Fourier Support Dichotomy
Proposition 4.1. Over F ., the Fourier transform of 1 is:

n
Ir(a) =[] S(ey),  S(a) =) x(—ac).
Jj=1 cely

The per-coordinate factor satisfies:

-1 if a # 0.
Proof. The torus indicator factorises as 17(z) =[] ; 12,0, so the Fourier transform factorises. For
the sum S(a) = > cp x(—ac): if a = 0, every term is 1 and S(0) = ¢ — 1. If a # 0, the map
q
¢~ —ac is a bijection on Fy, so S(a) = 3 cp X(¢) = > yep, X(£) =1 =0—-1=—1. O
q

S(a) = {q—l ifa=0,
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Theorem 4.2 (Fourier Support Dichotomy). Let m(a) = |{j : aj = 0}| for o € Fy. Then in F -
Lr(a) = (=1)" ™ (g — 1)),
Consequently: . .
(i) If p| (¢ —1): 1p(a) # 0 <= « € T. In particular, 1p(a) = (=1)" = 1p(a) for p = 2,

recovering self—/ciuality.
(i) If pt (¢ —1): 1r(a) #0 <= «a # 0. The Fourier transform has full support on Fy \ {0}.

Proof. By Proposition 17(a) = [1; S(aj) = (—1)"="@) (g —1)™(®), This vanishes in Fx if and
only if m(ar) > 1 and ¢ — 1 =0 (mod p). O

5 Lower Bound

Lemma 5.1 (Gate Fourier support). If go/ is a gate with {(x) = a-x+b, then supp(g/o\f) CFy-a.

Proof. The Fourier transform of go/ at a involves a sum over the affine hyperplane {x : a-z+b = v}.
This sum vanishes unless o € (kera)t =F, - a. O

Lemma 5.2 (Frobenius orbits). Let k = ord,(p). The Frobenius o — pa acts on Fy \ {0} with
orbits of size dividing k. Each line F, - a through a nonzero a contains:

(a) (¢ —1)/k Frobenius orbits lying in Fy - a (the torus part of the line), and

(b) one additional orbit {0} (which has size 1).
For a € T, the line F, - a meets T in exactly (¢ — 1)/k Frobenius orbits. For a ¢ T'U {0}, the line
Fy - a meets Fy \ {0} in (¢ — 1)/k Frobenius orbits (all lying in F} - a).
Proof. The orbits of F; under multiplication by p have size k = ord,(p), giving (¢ — 1)/k orbits.
The line F, - a intersected with Fy \ {0} is [} - a, which inherits the orbit decomposition. O

Theorem 5.3 (Lower bound). For all primes p and odd prime powers q with char(F,) # p:
(=D difpl(a—1),

t(p7Q7n) Z qn_ 1 .
) ifpt(g—1).

Proof. Suppose 17 = > """, ¢i(gi o £;) with ¢; € 7. Taking FF,x-Fourier transforms:
w —_—
1T = Zcigi ng‘.
i=1

For any a with f;(a) # 0, at least one gate must satisfy gTo\&(a) # 0, placing « on the line F, - a;
by Lemma Since the Fourier support is a union of Frobenius orbits by , each such orbit
must be covered by some gate.

Case p | (¢ — 1): By Theorem [4.2[i), the Fourier support is 7. The torus has (¢ — 1)"/k
Frobenius orbits, and each gate line covers at most (¢ — 1)/k:

n
w.qklz(q kl) :>w2(q_1)n71'

Case p 1 (¢ — 1): By Theorem [4.2[(ii), the Fourier support is Iy \ {0}, which has (¢" —1)/k
Frobenius orbits. Each gate line covers at most (¢ — 1)/k orbits in Fy \ {0} (namely the orbits in
FZ : a,-):

q—1 _ q¢q"—1 q" —1
_ > — >
kT k Y=

w -

= [P (Fy)l. =



6 Upper Bound

The upper bound in both cases follows from a single Fourier inversion construction.
Theorem 6.1 (Upper bound). For all primes p and prime powers q with char(F,) # p and n > 1:
(=1 difpl(a—1),

t(p,q, < n
PEVEVEL e

Proof. For each nonzero direction a € Fy \ {0}, define the homogeneous linear form /,(z) = a -z
and the gate function g,: F; — IF,, by

9a(v) = ¢jq - 1[v = 0],
where [a] denotes the projective class of a and

(=1)r=ma) . (g — 1)™(a)
qn—l

Cla] = S IFp, (2)

n—1

with m(a) = |{j : a;j = 0}] as before, and ¢"~" is inverted in F,, (possible since char(F,) # p). The
coefficient ¢, depends only on the projective class [a] since m(ta) = m(a) for t € F}.

Claim: The function
F(z) = Z Clq - 1[a -z =0]
[a]eP" =1 (Fq)

satisfies F'(x) = 17(x) + C for a constant C € F,,.
Proof of claim. Expand each indicator using the additive characters of [F:

l[a-a::()]:;Z)dsax f—i— Z s5-a-T)

s€Fq seIF*

Substituting into F' and using @ = sa to parametrise Fy \ {0}:

F(fﬂ)zlz%ﬁz > 2 xlsa-w)

q la] [a]eP—1 sclFs
1 Clo]
=Co+ - E x(a-x), (3)
q & q—1
aeF7\{0}

where we used the fact that each « # 0 is counted once for each s € Fy in its projective class, and
the factor 1/(¢ — 1) compensates.

Now ¢jo)/(g(q = 1)) = (=1)" "™ (g — 1)™/(¢"(q — 1)). But ¢ *(=1)""™) (g — 1)™) =
17(«)/q™ is the normalised Fourier coefficient. More precisely:

Gl (=)@ (g 1)@ 1z(a)

aa—1) " (q—1) S q'(a—1)
Wait — let us redo this directly. By Proposition

3 D) xla- o) = Tr(0)/a" + 5 (=1 " (g = 1) x(a-a).

acFy a#0




Grouping terms by projective class: each class [a] contributes ¢ — 1 terms (for s € IFy), all with the

same coefficient (—1)""™(%) (g — 1)™(%) since m(sa) = m(a):

1r(r) = ;n”" o ST g = 1) g 1fa 0 = 0] - 1)

[a]
(¢—1)" 1 —m(a) (a)
= + E 1)n—ma )™ Y1[a-z=0
7 1 [a}( ) (q ) [ ]

- ql S (—1)mm@) (g — 1ym@), (4)
[a]

The middle term is } 3, (g 1[a-z = 0] = F(x). The first and third terms are constants (independent
of ). Therefore 17(z) = F(x) + C for some constant C € F),.

Since a constant function can be absorbed into any single gate (by adjusting g,(v) for one gate),
the number of gates equals the number of projective classes [a] for which ¢ # 0 in .

Counting nonzero gates. The coefficient cp, = (—=1)n=@) (g —1)™@) /g"=1 vanishes in F, if and
only if p | (¢ — 1) and m(a) > 1 (since ¢" ! is invertible and (—1)"~™(%) is a unit).

e If p|(¢g—1): ¢/ # 0 only when m(a) =0, i.e., a € T. The number of such projective classes

is [T]/(q—1) = (¢ —1)" "

o If pt(g—1): cpg # 0 for all [a] € P"1(F,), giving (¢" —1)/(q — 1) gates.

This completes the proof.

Proof of Theorem[1.1. Combine Theorem [5.3] and Theorem

7 The Construction Explicitly

The proof of Theorem yields a concrete gate representation, which we record here.

7.1 Casep|(¢—1)

The gates are indexed by s € (F)"~!. For each s, define
ls() :$1+ZSJ—133J'7 gs(v) = A+ 1v # 0],
j=2

where A = ((¢—1)" — (=1)")~! - ¢~ ! € F} is a normalisation constant. Then Y, g(¢s(z)) = 17(z)
in [Fp.
Remark 7.1. The gate function gs(v) = A - 1[v # 0] is independent of s: all gates use the same

nonlinear function. Only the affine map ¢s varies. This matches the p = 2 construction of [I],
where the XOR of 1[/, # 0] over s € (F})"~! computes 17.



7.2 Casepf(qg—1)

The gates are indexed by projective points [a] € P"~1(F,). There are two types:
(i) Torus directions (a € T, so m(a) = 0): gjq)(v) = ¢[q) - L[v = 0] with ¢ = (1) /g L.
(ii) Boundary directions (a ¢ T, so m(a) > 1): giq)(v) = c[q) - 1[v = 0] with ¢|y) = (—1)n—m(a) (g —
1)m(a)/qn71_
Both types use g(v) = ¢- 1[v = 0] with different constants. The boundary directions contribute to
the representation because ¢ — 1 is nonzero in I, so these gates are non-constant.

8 Remarks

8.1 Projective-geometric interpretation

The dichotomy has a clean projective interpretation. A gate with linear part ¢,(x) = a - x probes
the hyperplane H, = {z : a-x = 0} in Fj. The torus T" avoids all coordinate hyperplanes, so
detecting T requires distinguishing it from Z.

When p | (¢ — 1), the Fourier analysis over IF«x sees only T": the boundary Fourier coefficients
vanish. The gate complexity equals (¢ — 1)"~!, the number of [Fg-orbits in 7" modulo scaling.

When p { (¢ — 1), the Fourier analysis sees all of [ \ {0}: boundary directions carry nonzero
Fourier mass. The gate complexity jumps to [P~ 1(F,)| = 1+ ¢+ ¢*+---+¢" !, the total number
of hyperplane directions.

8.2 Phase transition at p| (¢ — 1)

The ratio of the two formulas is

(q”_l)/(q—l)_1—|—q+...+qn—1 qn_l —>< ¢

Y I § L R S D AN |

n—1
) as n — oQ.

For small ¢, this ratio is significant: for ¢ = 3, the jump from p = 2 (giving 2"~!) to p = 5 (giving
(3" —1)/2) is a factor of roughly (3/2)"L.

8.3 Unification with ¢ =2

For ¢ = 2, the torus T' = {1}" is a single point and ¢ — 1 = 1. Since p 1 for all primes p > 2,
we are always in Case 2: t(p,2,n) = (2" — 1)/1 = 2" — 1. This matches the known formula from
[1], which was proved by Walsh—Fourier analysis. The present result gives a uniform explanation:
every projective direction in P*"~!(F3) is needed because the Fourier transform has full support.

9 Computational Verification

We verify Theorem computationally for all primes p < 11 and prime powers ¢ < 11 with
char(F;) # p, and dimensions n < 4 (subject to ¢" < 300). The verification uses two independent
methods:
(i) Construction check: for each (p,q,n), verify that the Fourier inversion construction with
(q—1)"Lor (¢" —1)/(q — 1) gates produces 17 in F,,.
(ii) Optimality check: for small cases, verify via linear algebra over F, that no representation
with fewer gates exists.



P q Case n=1 n=2 n=3
2 3 pl(¢g-1) 1 2 4

2 5 pl(g-1) 1 4 16
3 7 pllg-1) 1 6 36
5 11 pl(g-1) 1 10 100
3 2 pt(¢-1) 1 3 7

5 3 pt(g-1) 1 4 13
7 3 pt(¢g-1) 1 4 13
3 5 pt(g—1) 1 6 31
5 7 pt(g=1) 1 8 57

All values match the formula in Theorem Both upper and lower bounds are verified indepen-
dently.
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