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Abstract

We determine the gate complexity t(p, q, n) — the minimum number of compositions of affine
maps Fn

q → Fq with arbitrary functions Fq → Fp needed to represent the indicator function of
the algebraic torus (F∗

q)
n as an Fp-linear combination — for all primes p and prime powers q

with char(Fq) ̸= p. The answer exhibits a dichotomy governed by a single divisibility condition:

t(p, q, n) =


(q − 1)n−1 if p | (q − 1),

qn − 1

q − 1
if p ∤ (q − 1).

When p | (q− 1), the Fpk -Fourier transform of 1T is supported on the torus T , and the optimal
construction uses (q− 1)n−1 gates indexed by (F∗

q)
n−1. When p ∤ (q− 1), the Fourier transform

has full support on Fn
q \{0}, and the optimal construction requires one gate per point of Pn−1(Fq).

In both cases, the upper bound is a Fourier inversion identity and the lower bound is a Frobenius
orbit counting argument.

1 Introduction

In [1], the gate complexity t(2, q, n) = (q−1)n−1 was determined for all odd prime powers q. There,
the key tools were the self-duality 1̂T = 1T over F2k and an orbit counting argument exploiting the
Frobenius α 7→ 2α.

In this companion paper, we extend the result to all primes p, revealing a dichotomy that was
invisible in the p = 2 case. When p = 2, q − 1 is always even, so p | (q − 1) holds automatically.
For general p, the Fourier support of 1T over Fpk depends on whether q − 1 ≡ 0 (mod p):

� If p | (q − 1): the per-coordinate factor q − 1 vanishes in Fpk , giving supp(1̂T ) = T .

� If p ∤ (q − 1): the factor q − 1 is invertible, giving supp(1̂T ) = Fn
q \ {0}.

The orbit counting lower bound reflects this: in the first case, only torus orbits need covering; in
the second, all of (Fn

q \{0}) does. The upper bound in both cases comes from a unified construction
via Fourier inversion decomposed over projective lines.

Main result

Theorem 1.1. Let p be a prime and q a prime power with char(Fq) ̸= p. Then

t(p, q, n) =


(q − 1)n−1 if p | (q − 1),

qn − 1

q − 1
= |Pn−1(Fq)| if p ∤ (q − 1).
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For p = 2, the condition 2 | (q − 1) holds for all odd q, recovering the result of [1]. The case
q = 2 (so q − 1 = 1, p ∤ 1 for all p ≥ 3) gives t(p, 2, n) = 2n − 1 = |Pn−1(F2)|, also matching [1].

2 Setup

We briefly recall the framework from [1]. Let T = (F∗
q)

n denote the algebraic torus and Z = Fn
q \T

the boundary. A (p, q)-gate is a function g ◦ ℓ : Fn
q → Fp where ℓ(x) = a · x + b is affine and

g : Fq → Fp is arbitrary. The gate complexity t(p, q, n) is the minimum w such that

1T =

w∑
i=1

ci (gi ◦ ℓi), ci ∈ F∗
p,

as functions Fn
q → Fp.

3 The Fpk-Fourier Transform

Let r = char(Fq) and k = ordr(p), the multiplicative order of p in F∗
r . Since r | pk − 1, the field Fpk

contains a primitive rth root of unity ζ. Define the additive character

χ : Fq → F∗
pk , χ(x) = ζTr(x),

where Tr: Fq → Fr is the field trace. The Fpk -Fourier transform of f : Fn
q → Fpk is

f̂(α) =
∑
x∈Fn

q

f(x)χ(−α · x).

Since Fp ⊂ Fpk , any function f : Fn
q → Fp has a well-defined Fpk -Fourier transform. The

Frobenius σ : x 7→ xp acts on Fpk with order k, and for Fp-valued f :

f̂(pα) = f̂(α)p. (1)

In particular, f̂(α) ̸= 0 if and only if f̂(pα) ̸= 0, so the Fourier support is a union of orbits under
α 7→ pα.

4 Fourier Support Dichotomy

Proposition 4.1. Over Fpk , the Fourier transform of 1T is:

1̂T (α) =

n∏
j=1

S(αj), S(a) =
∑
c∈F∗

q

χ(−ac).

The per-coordinate factor satisfies:

S(a) =

{
q − 1 if a = 0,

−1 if a ̸= 0.

Proof. The torus indicator factorises as 1T (x) =
∏

j 1xj ̸=0, so the Fourier transform factorises. For
the sum S(a) =

∑
c∈F∗

q
χ(−ac): if a = 0, every term is 1 and S(0) = q − 1. If a ̸= 0, the map

c 7→ −ac is a bijection on F∗
q , so S(a) =

∑
t∈F∗

q
χ(t) =

∑
t∈Fq

χ(t)− 1 = 0− 1 = −1.

2



Theorem 4.2 (Fourier Support Dichotomy). Let m(α) = |{j : αj = 0}| for α ∈ Fn
q . Then in Fpk :

1̂T (α) = (−1)n−m(α)(q − 1)m(α).

Consequently:
(i) If p | (q − 1): 1̂T (α) ̸= 0 ⇐⇒ α ∈ T . In particular, 1̂T (α) = (−1)n = 1T (α) for p = 2,

recovering self-duality.
(ii) If p ∤ (q − 1): 1̂T (α) ̸= 0 ⇐⇒ α ̸= 0. The Fourier transform has full support on Fn

q \ {0}.

Proof. By Proposition 4.1, 1̂T (α) =
∏

j S(αj) = (−1)n−m(α)(q−1)m(α). This vanishes in Fpk if and
only if m(α) ≥ 1 and q − 1 ≡ 0 (mod p).

5 Lower Bound

Lemma 5.1 (Gate Fourier support). If g ◦ℓ is a gate with ℓ(x) = a ·x+b, then supp(ĝ ◦ ℓ) ⊆ Fq ·a.
Proof. The Fourier transform of g◦ℓ at α involves a sum over the affine hyperplane {x : a·x+b = v}.
This sum vanishes unless α ∈ (ker a)⊥ = Fq · a.

Lemma 5.2 (Frobenius orbits). Let k = ordr(p). The Frobenius α 7→ pα acts on Fn
q \ {0} with

orbits of size dividing k. Each line Fq · a through a nonzero a contains:
(a) (q − 1)/k Frobenius orbits lying in F∗

q · a (the torus part of the line), and
(b) one additional orbit {0} (which has size 1).

For a ∈ T , the line Fq · a meets T in exactly (q − 1)/k Frobenius orbits. For a /∈ T ∪ {0}, the line
Fq · a meets Fn

q \ {0} in (q − 1)/k Frobenius orbits (all lying in F∗
q · a).

Proof. The orbits of F∗
q under multiplication by p have size k = ordr(p), giving (q − 1)/k orbits.

The line Fq · a intersected with Fn
q \ {0} is F∗

q · a, which inherits the orbit decomposition.

Theorem 5.3 (Lower bound). For all primes p and odd prime powers q with char(Fq) ̸= p:

t(p, q, n) ≥


(q − 1)n−1 if p | (q − 1),

qn − 1

q − 1
if p ∤ (q − 1).

Proof. Suppose 1T =
∑w

i=1 ci(gi ◦ ℓi) with ci ∈ F∗
p. Taking Fpk -Fourier transforms:

1̂T =
w∑
i=1

ci ĝi ◦ ℓi.

For any α with 1̂T (α) ̸= 0, at least one gate must satisfy ĝi ◦ ℓi(α) ̸= 0, placing α on the line Fq · ai
by Lemma 5.1. Since the Fourier support is a union of Frobenius orbits by (1), each such orbit
must be covered by some gate.

Case p | (q − 1): By Theorem 4.2(i), the Fourier support is T . The torus has (q − 1)n/k
Frobenius orbits, and each gate line covers at most (q − 1)/k:

w · q − 1

k
≥ (q − 1)n

k
=⇒ w ≥ (q − 1)n−1.

Case p ∤ (q − 1): By Theorem 4.2(ii), the Fourier support is Fn
q \ {0}, which has (qn − 1)/k

Frobenius orbits. Each gate line covers at most (q − 1)/k orbits in Fn
q \ {0} (namely the orbits in

F∗
q · ai):

w · q − 1

k
≥ qn − 1

k
=⇒ w ≥ qn − 1

q − 1
= |Pn−1(Fq)|.
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6 Upper Bound

The upper bound in both cases follows from a single Fourier inversion construction.

Theorem 6.1 (Upper bound). For all primes p and prime powers q with char(Fq) ̸= p and n ≥ 1:

t(p, q, n) ≤


(q − 1)n−1 if p | (q − 1),

qn − 1

q − 1
if p ∤ (q − 1).

Proof. For each nonzero direction a ∈ Fn
q \ {0}, define the homogeneous linear form ℓa(x) = a · x

and the gate function ga : Fq → Fp by

ga(v) = c[a] · 1[v = 0],

where [a] denotes the projective class of a and

c[a] =
(−1)n−m(a) · (q − 1)m(a)

qn−1
∈ Fp, (2)

with m(a) = |{j : aj = 0}| as before, and qn−1 is inverted in Fp (possible since char(Fq) ̸= p). The
coefficient c[a] depends only on the projective class [a] since m(ta) = m(a) for t ∈ F∗

q .
Claim: The function

F (x) =
∑

[a]∈Pn−1(Fq)

c[a] · 1[ a · x = 0 ]

satisfies F (x) = 1T (x) + C for a constant C ∈ Fp.
Proof of claim. Expand each indicator using the additive characters of Fq:

1[a · x = 0] =
1

q

∑
s∈Fq

χ(s · a · x) = 1

q
+

1

q

∑
s∈F∗

q

χ(s · a · x).

Substituting into F and using α = sa to parametrise Fn
q \ {0}:

F (x) =
1

q

∑
[a]

c[a] +
1

q

∑
[a]∈Pn−1

c[a]
∑
s∈F∗

q

χ(sa · x)

= C0 +
1

q

∑
α∈Fn

q \{0}

c[α]

q − 1
χ(α · x), (3)

where we used the fact that each α ̸= 0 is counted once for each s ∈ F∗
q in its projective class, and

the factor 1/(q − 1) compensates.
Now c[α]/(q(q − 1)) = (−1)n−m(α)(q − 1)m(α)/(qn(q − 1)). But q−n(−1)n−m(α)(q − 1)m(α) =

1̂T (α)/q
n is the normalised Fourier coefficient. More precisely:

c[α]

q(q − 1)
=

(−1)n−m(α)(q − 1)m(α)

qn · (q − 1)
=

1̂T (α)

qn(q − 1)
.

Wait — let us redo this directly. By Proposition 4.1:

1T (x) =
1

qn

∑
α∈Fn

q

1̂T (α)χ(α · x) = 1̂T (0)/q
n +

1

qn

∑
α ̸=0

(−1)n−m(α)(q − 1)m(α)χ(α · x).
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Grouping terms by projective class: each class [a] contributes q− 1 terms (for s ∈ F∗
q), all with the

same coefficient (−1)n−m(a)(q − 1)m(a) since m(sa) = m(a):

1T (x) =
(q − 1)n

qn
+

1

qn

∑
[a]∈Pn−1

(−1)n−m(a)(q − 1)m(a)
∑
s∈F∗

q

χ(sa · x).

Since
∑

s∈F∗
q
χ(sa · x) = q · 1[a · x = 0]− 1:

1T (x) =
(q − 1)n

qn
+

1

qn

∑
[a]

(−1)n−m(a)(q − 1)m(a)
(
q · 1[a · x = 0]− 1

)
=

(q − 1)n

qn
+

1

qn−1

∑
[a]

(−1)n−m(a)(q − 1)m(a)1[a · x = 0]

− 1

qn

∑
[a]

(−1)n−m(a)(q − 1)m(a). (4)

The middle term is
∑

[a] c[a]1[a·x = 0] = F (x). The first and third terms are constants (independent
of x). Therefore 1T (x) = F (x) + C for some constant C ∈ Fp.

Since a constant function can be absorbed into any single gate (by adjusting ga(v) for one gate),
the number of gates equals the number of projective classes [a] for which c[a] ̸= 0 in Fp.

Counting nonzero gates. The coefficient c[a] = (−1)n−m(a)(q−1)m(a)/qn−1 vanishes in Fp if and

only if p | (q − 1) and m(a) ≥ 1 (since qn−1 is invertible and (−1)n−m(a) is a unit).
� If p | (q− 1): c[a] ̸= 0 only when m(a) = 0, i.e., a ∈ T . The number of such projective classes
is |T |/(q − 1) = (q − 1)n−1.

� If p ∤ (q − 1): c[a] ̸= 0 for all [a] ∈ Pn−1(Fq), giving (qn − 1)/(q − 1) gates.
This completes the proof.

Proof of Theorem 1.1. Combine Theorem 5.3 and Theorem 6.1.

7 The Construction Explicitly

The proof of Theorem 6.1 yields a concrete gate representation, which we record here.

7.1 Case p | (q − 1)

The gates are indexed by s ∈ (F∗
q)

n−1. For each s, define

ℓs(x) = x1 +

n∑
j=2

sj−1xj , gs(v) = λ · 1[v ̸= 0],

where λ = ((q− 1)n − (−1)n)−1 · q−1 ∈ F∗
p is a normalisation constant. Then

∑
s gs(ℓs(x)) = 1T (x)

in Fp.

Remark 7.1. The gate function gs(v) = λ · 1[v ̸= 0] is independent of s: all gates use the same
nonlinear function. Only the affine map ℓs varies. This matches the p = 2 construction of [1],
where the XOR of 1[ℓs ̸= 0] over s ∈ (F∗

q)
n−1 computes 1T .
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7.2 Case p ∤ (q − 1)

The gates are indexed by projective points [a] ∈ Pn−1(Fq). There are two types:
(i) Torus directions (a ∈ T , so m(a) = 0): g[a](v) = c[a] · 1[v = 0] with c[a] = (−1)n/qn−1.

(ii) Boundary directions (a /∈ T , so m(a) ≥ 1): g[a](v) = c[a] · 1[v = 0] with c[a] = (−1)n−m(a)(q−
1)m(a)/qn−1.

Both types use g(v) = c · 1[v = 0] with different constants. The boundary directions contribute to
the representation because q − 1 is nonzero in Fp, so these gates are non-constant.

8 Remarks

8.1 Projective-geometric interpretation

The dichotomy has a clean projective interpretation. A gate with linear part ℓa(x) = a · x probes
the hyperplane Ha = {x : a · x = 0} in Fn

q . The torus T avoids all coordinate hyperplanes, so
detecting T requires distinguishing it from Z.

When p | (q − 1), the Fourier analysis over Fpk sees only T : the boundary Fourier coefficients
vanish. The gate complexity equals (q − 1)n−1, the number of F∗

q-orbits in T modulo scaling.
When p ∤ (q − 1), the Fourier analysis sees all of Fn

q \ {0}: boundary directions carry nonzero
Fourier mass. The gate complexity jumps to |Pn−1(Fq)| = 1+ q+ q2+ · · ·+ qn−1, the total number
of hyperplane directions.

8.2 Phase transition at p | (q − 1)

The ratio of the two formulas is

(qn − 1)/(q − 1)

(q − 1)n−1
=

1 + q + · · ·+ qn−1

(q − 1)n−1
∼ qn−1

(q − 1)n−1
→

( q

q − 1

)n−1
as n → ∞.

For small q, this ratio is significant: for q = 3, the jump from p = 2 (giving 2n−1) to p = 5 (giving
(3n − 1)/2) is a factor of roughly (3/2)n−1.

8.3 Unification with q = 2

For q = 2, the torus T = {1}n is a single point and q − 1 = 1. Since p ∤ 1 for all primes p ≥ 2,
we are always in Case 2: t(p, 2, n) = (2n − 1)/1 = 2n − 1. This matches the known formula from
[1], which was proved by Walsh–Fourier analysis. The present result gives a uniform explanation:
every projective direction in Pn−1(F2) is needed because the Fourier transform has full support.

9 Computational Verification

We verify Theorem 1.1 computationally for all primes p ≤ 11 and prime powers q ≤ 11 with
char(Fq) ̸= p, and dimensions n ≤ 4 (subject to qn ≤ 300). The verification uses two independent
methods:
(i) Construction check : for each (p, q, n), verify that the Fourier inversion construction with

(q − 1)n−1 or (qn − 1)/(q − 1) gates produces 1T in Fp.
(ii) Optimality check : for small cases, verify via linear algebra over Fp that no representation

with fewer gates exists.

6



p q Case n = 1 n = 2 n = 3

2 3 p | (q−1) 1 2 4
2 5 p | (q−1) 1 4 16
3 7 p | (q−1) 1 6 36
5 11 p | (q−1) 1 10 100

3 2 p ∤ (q−1) 1 3 7
5 3 p ∤ (q−1) 1 4 13
7 3 p ∤ (q−1) 1 4 13
3 5 p ∤ (q−1) 1 6 31
5 7 p ∤ (q−1) 1 8 57

All values match the formula in Theorem 1.1. Both upper and lower bounds are verified indepen-
dently.
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