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Abstract

Starting from the spanning tree spectrum of Alon–Bucić–Gishboliner, we construct a
dictionary between feasible vectors of series-parallel graphs and cusps of Γ0(N). For any
weight-2 newform f of level N , the average of the plus modular symbol {0, t/u}+ over all
feasible vectors of weight n converges to a limit cf ∈ Q as n→ ∞. We prove this by reducing
the problem to a finite Markov chain on the cusp graph (Z/NZ)2, and show that cf is given
by an explicit rational linear algebra formula.

The product λf = cf ·Ω+ is an invariant of the isogeny class, defining a new arithmetic
invariant of weight-2 newforms. We compute λf for all 93 elliptic curves (one per isogeny
class) of conductor ≤ 100 and establish that the denominators of cf are governed by det(I−
P+Π), a purely combinatorial quantity depending only on N . The “alien primes” appearing
in den(cf )—primes dividing neither N , |Etors|, nor 6—are identified as spectral invariants
of the Markov chain acting on P1(Z/NZ).

For the rank-0 case at prime level, we prove that the key second moment s2 =
∑
k2ψ(k) >

0 via a novel polynomial factorization: the generating function H(x) =
∑
ψ(r)xr factors

as x(1 − x)2P (x) where P has all non-negative coefficients, verified for all rank-0 optimal
curves of prime conductor p ≤ 200.
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1 Introduction

Let A =
(
1 1
0 1

)
and D =

(
1 0
1 1

)
. Following Alon, Bucić, and Gishboliner [1], a vector

(
t
u

)
∈ Z2

is feasible of weight n if (
t
u

)
= Aa1Db1 · · ·AaℓDbℓ

(
1
0

)
(1)

for some ai, bi ≥ 1 with
∑

(ai + bi) = n. The set Fn of feasible vectors satisfies |Fn| = 2n−1 − 1,
and t/u = [a1; b1, a2, . . . , bℓ] as a continued fraction.

Each feasible vector corresponds to a two-terminal series-parallel graph Gw where w =
Aa1Db1 · · ·AaℓDbℓ : the number t counts spanning trees and t/u is the effective resistance with
unit weights.

Given a weight-2 newform f of level N , denote by {0, r}+ the plus-part modular symbol,
normalized so that {0, r}+ = 1

Ω+ Re
∫ r
0 2πif(z) dz. Our objects of study are the normalized
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averages

cf (n) =
1

|Fn|
∑

(t,u)∈Fn

{0, t/u}+.

2 Main Results

Theorem 2.1 (Rationality). For every weight-2 newform f of level N , the limit cf = limn→∞ cf (n)
exists and is a rational number. Explicitly,

cf = µT (I − P +Π)−1ψ , (2)

where P ∈ QS×S is the transition matrix of the cusp Markov chain, ψ ∈ QS is the Manin
symbol increment vector, µ ∈ QS is the initial distribution, Π = 1πT is the projection onto the
stationary distribution, and S = {(c, d) ∈ (Z/NZ)2 : gcd(c, d,N) = 1, (c, d) ̸= (0, 0)}.

Theorem 2.2 (Isogeny invariance). Let E,E′ be elliptic curves in the same isogeny class over
Q, with associated newform f . Then cf (E)·Ω+(E) = cf (E

′)·Ω+(E′). The quantity λf := cf ·Ω+

depends only on the isogeny class.

Theorem 2.3 (Denominator theorem). For every weight-2 newform f of level N ,

den(cf )
∣∣∣ det(I − P +Π),

where P and Π are as in Theorem 2.1. The matrix I − P + Π depends only on N (not on f),
so the primes that can appear in den(cf ) are determined by N alone.

Theorem 2.4 (Trivial graph motive). For any series-parallel graph Gw, the Kirchhoff polyno-
mial ΨGw is multilinear in the parallel-edge variables and independent of the series-edge vari-
ables. The graph hypersurface XGw has trivial motive, the Brown–Schnetz c2 invariant vanishes,
and the Feynman period is a product of beta functions.

Theorem 2.5 (Non-universality). The ratio λf/L(f, 1) is rational for rank-0 curves but takes
distinct values across different newforms: it is not a universal function of L(f, 1)/Ω+, |Etors|,
Tamagawa numbers, or the conductor N .

Theorem 2.6 (Cusp evaluation). Let V = (I − P +Π)−1ψf be the value function. Then:

(i) V ([1 : 0]) = cf ,

(ii) V ([0 : 1]) = cf − L(f, 1)/Ω+
f .

In particular, cf is the expected total Manin symbol accumulated by the chain started at the cusp
[1 : 0] = ∞, and positivity cf > 0 is equivalent to V (∞) > 0.

Theorem 2.7 (Positivity). cf > 0 for all 93 optimal newforms of conductor N ≤ 100.

Theorem 2.8 (Steinberg irreducibility). For prime N = p, the representation of the transition
operator P on P1(Fp) decomposes as 1 ⊕ Stp, where Stp is the Steinberg representation of di-
mension p. The characteristic polynomial of (2p − 1) · P |Stp is irreducible of degree p over Q,
with Galois group Sp.

Theorem 2.9 (Mersenne denominator). For prime N = p,

det(I − P |Stp) =
Ap

Φp(2)
, Φp(2) = 2p − 1,

where Ap ∈ Z and Φp denotes the p-th cyclotomic polynomial. The alien primes at level p are
exactly the odd prime factors of Ap exceeding 3.
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Theorem 2.10 (Alien primes as norms). Let α be any root of the Steinberg characteristic
polynomial at prime level p, and let Kp = Q(α). Then

Ap = NKp/Q
(
(2p − 1)(1− α)

)
,

and the alien primes are exactly the primes dividing this norm that do not divide 6p(2p − 1).

Theorem 2.11 (Second moment positivity). For every rank-0 optimal elliptic curve E/Q
of prime conductor p ≤ 200, the second moment s2 =

∑p−1
k=1 k

2ψ([1 : k]) is strictly pos-
itive. The positivity is established via a polynomial factorization: the generating function
H(x) =

∑p−1
r=1 ψ(r)x

r satisfies H(x) = x(1 − x)2P (x) where P (x) has all non-negative coef-
ficients.

3 Proof of Rationality

The proof proceeds in five steps.

3.1 Translation invariance

Lemma 3.1. {0, a+ p/q}+ = {0, p/q}+ for all integers a ≥ 0 and rationals p/q.

Proof. Since z 7→ z+a lies in SL2(Z) and maps {a, a+p/q} to {0, p/q}, we have {a, a+p/q}+ =
{0, p/q}+. Also {0, a}+ = 0 since a is Γ0(N)-equivalent to i∞.

Since a1 = ⌊t/u⌋ ≥ 1 for any feasible vector, {0, t/u}+ = {0, {t/u}}+.

3.2 The increment function

The CF expansion of {t/u} = [0; b1, a2, . . . , bℓ] has convergents pk/qk. By telescoping,

{0, {t/u}}+ =
L∑

k=1

ψk, ψk = {0, pk/qk}+ − {0, pk−1/qk−1}+.

Lemma 3.2. The increment ψk depends only on (qk−1 mod N, qk mod N).

Proof. The convergent matrix γk =
( pk−1 pk
qk−1 qk

)
has det γk = (−1)k. In the Manin symbol for-

malism, the path {pk−1/qk−1, pk/qk} corresponds to the symbol [γk] ∈ Γ0(N)\SL2(Z). Via the
isomorphism Γ0(N)\SL2(Z) ∼= P1(Z/NZ) given by γ 7→ (bottom row of γ) mod N , the symbol
[γk] is determined by (qk−1 mod N, qk mod N). Since −I acts trivially on weight-2 forms, the
sign ambiguity det γk = ±1 does not affect ψ+

k .

Define ψ : S → Q by this consistent value.

3.3 The Markov chain

The CF recurrence qk+1 = ak+1qk + qk−1 gives the transition (qk−1 mod N, qk mod N) →
(qk mod N, (ak+1qk + qk−1) mod N).

The state space is S = {(c, d) ∈ (Z/NZ)2 : gcd(c, d,N) = 1} \ {(0, 0)}. For large weight, the
partial quotients are asymptotically iid Geom(1/2). Grouping j ≥ 1 by residue r = j mod N :

P
(
(c, d) → (d, e)

)
=

∑
j≥1

jd+c≡e (mod N)

2−j =
2N−r

2N − 1
, (3)

where r ∈ {0, 1, . . . , N − 1} satisfies rd+ c ≡ e (mod N).
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3.4 Double stochasticity and centering

Lemma 3.3. P is doubly stochastic on S.

Proof. For target state (d, e), each column entry P ((c, d) → (d, e)) corresponds to a unique
residue r = r(c) ∈ {0, . . . , N − 1} (namely r such that rd + c ≡ e (mod N)), and conversely

each r determines a unique c. So the column sum is
∑N−1

r=0
2N−r

2N−1
= 2N+2N−1+···+21

2N−1
= 1.

Lemma 3.4. Eπ[ψ] =
∑

s∈S π(s)ψ(s) = 0.

Proof. Since P is doubly stochastic, π is uniform: π(s) = 1/|S|. So Eπ[ψ] = 0 iff
∑

s∈S ψ(s) = 0.
The group (Z/NZ)× acts freely on S by λ · (c, d) = (λc, λd). Each orbit maps to a single
projective point [c : d] ∈ P1(Z/NZ), and each fiber has size exactly φ(N).

Since ψ is constant on (Z/NZ)×-orbits (the Manin symbol depends only on the projective
class),

∑
s∈S ψ(s) = φ(N)

∑
[c:d]∈P1(Z/NZ)[c : d]+f . The classical Manin relation gives

∑
[c:d][c :

d]+f = 0, completing the proof.

3.5 Spectral gap

Lemma 3.5. P restricted to S is irreducible and aperiodic.

Proof. Irreducibility. With j = 0: T0(c, d) = (d, c); with j = 1: T1(c, d) = (d, d + c). These
correspond to right-multiplication by S =

(
0 1
1 0

)
and SU =

(
1 1
0 1

)
, which generate SL2(Z/NZ).

Since SL2(Z/NZ) acts transitively on S, the chain is irreducible.
Aperiodicity. For c ̸≡ 0 (mod N), the state (c, c) has a self-loop with j = 0: (c, c) →

(c, 0 · c+ c) = (c, c), with weight w0 = 1/(2N − 1) > 0.

Since Eπ[ψ] = 0 and P has a spectral gap, the Neumann series V =
∑

k≥0 P
kψ converges.

Equivalently, V = (I − P +Π)−1ψ, which is rational since P , Π, and ψ are all rational.

3.6 The formula for cf

The initial state is X0 = (1, b1 mod N) with b1 ∼ Geom(1/2). The initial distribution µ(1, r) =
2N−r/(2N − 1) is rational. Then

cf =
∑
s

µ(s)V (s) = µT (I − P +Π)−1ψ ∈ Q.

4 Proof of the Denominator Theorem

Proof of Theorem 2.3. By Cramer’s rule, (I−P +Π)−1 = adj(I−P +Π)/det(I−P +Π). The
adjugate matrix has rational entries. Since µ and ψ are also rational,

cf =
µT · adj(I − P +Π) · ψ

det(I − P +Π)
∈ Q,

and den(cf ) | det(I − P +Π) (up to cancellation in the numerator).
Crucially, P and Π depend only on N : the transition matrix (3) uses only the weights

2N−r/(2N −1) and the group law of (Z/NZ)2, while Π = 1πT with π uniform on S. The Manin
symbol vector ψ varies with f , but it enters only in the numerator.

Proof of Theorem 2.6. The value function V = (I − P +Π)−1ψ satisfies (I − P +Π)V = ψ, so
for each state s,

V (s) = ψ(s) +
∑
t

P (s, t)V (t)− 1

|P1|
∑
t

V (t). (4)
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We first show the last term vanishes. Since P is stochastic, 1TP = 1T and 1TΠ = 1T , so
1T (I−P+Π) = 1T . Multiplying (I−P+Π)V = ψ on the left by 1T gives

∑
t V (t) =

∑
t ψ(t) = 0

(centering). So (4) simplifies to

V (s) = ψ(s) + [PV ](s). (5)

From [1 : 0]: the transition sends (c, d) = (1, 0) 7→ (d, rd + c) = (0, 1) for every partial
quotient r, so P ([1 : 0], ·) = δ[0:1]. Thus V ([1 : 0]) = ψ([1 : 0]) + V ([0 : 1]).

From [0 : 1]: the transition sends (0, 1) 7→ (1, r) with weight wr for each r, so P ([0 : 1], [1 :
r]) = wr. Thus V ([0 : 1]) = ψ([0 : 1]) +

∑N−1
r=0 wrV ([1 : r]) = ψ([0 : 1]) + cf , where the last

equality holds because cf = µTV =
∑

r wrV ([1 : r]).
Adding and using the S-relation ψ([1 : 0]) + ψ([0 : 1]) = 0: V ([1 : 0]) = cf .

Remark 4.1. The identity V ([0 : 1]) = cf − L(f, 1)/Ω+ follows from ψ([0 : 1]) = −L(f, 1)/Ω+

(since [0 : 1] is the cusp 0 and ψ([0 : 1]) = {0,∞}+ is the period integral).

Proof of Theorem 2.7. The constraint
∑

s∈S V (s) = 0 and the cusp evaluation give

cf =
L(f, 1)/Ω+ −G

n
, G :=

∑
j∈int

g(j), (6)

where n = |P1(FN )|, int = S \ {[0 : 1], [1 : 0]}, and g = (I −Q)−1ψint records the expected accu-
mulated Manin symbol from each interior state until first hitting [1 : 0], with Q the transition
matrix restricted to the interior.

For each of the 93 optimal newforms of conductor N ≤ 100, we compute cf in exact rational
arithmetic by solving (I−P+Π)V = ψ over Q, and independently verify (6). In all cases G < 0:
the time-integrated interior Manin symbol is negative. Since L(f, 1)/Ω+ ≥ 0 (with equality for
rank-1 curves), equation (6) gives cf > 0.

Remark 4.2 (Drainage interpretation). The negativity G < 0 can be understood as a “drainage”
effect: the substochastic interior chain Q absorbs mass at the cusp [1 : 0], and the geometric
weights wr = 2N−r/(2N − 1) create an asymmetry favoring transitions with small partial quo-
tients. Writing G =

∑
k≥0 sk with sk = 1TQkψint and s0 = 1Tψint = 0 (by the S-relation), we

find sk < 0 for all k ≥ 1 in the rank-0 case.

Definition 4.3. A prime p is an alien prime for conductor N if p | det(I −P +Π) but p ∤ 6N .

5 Spectral Theory of Alien Primes

We now analyze the structure of det(I − P +Π) and prove Theorems 2.8–2.10.

5.1 The Steinberg decomposition for prime N

For prime N = p, the projective line P1(Fp) has p+ 1 points. The permutation representation
C[P1(Fp)] of SL2(Fp) decomposes as 1⊕Stp, where 1 is the trivial representation and Stp is the
Steinberg representation of dimension p.

Since P commutes with the SL2(Z/pZ)-action on P1(Fp), it preserves this decomposition.
On 1, the operator P acts as the identity (it is stochastic), and on Stp it acts with eigenvalues
α1, . . . , αp. Therefore

det(I − P +Π) =
1

p+ 1
·

p∏
i=1

(1− αi). (7)
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5.2 Block structure of the transition matrix

We choose coordinates on P1(Fp) as {[1 : 0], [1 : 1], . . . , [1 : p− 1], [0 : 1]}, identifying the affine
chart with Fp and [0 : 1] with ∞.

Lemma 5.1. The transition matrix has the following block structure:

(i) P ([1 : 0]) = [0 : 1] (deterministic transition from 0 to ∞).

(ii) P ([0 : 1]) =
∑p−1

r=0 wr · [1 : r], where wr = 2p−r/(2p − 1) for r ≥ 1 and w0 = 1/(2p − 1).

(iii) For j ∈ F×
p : P ([1 : j]) =

∑p−1
r=0 wr · [1 : r + j−1].

On the interior F×
p = {1, . . . , p− 1}, the (p− 1)× (p− 1) block satisfies Pint = Inv · Tcirc, where

Inv is the inversion permutation and Tcirc is the restricted circulant with generating function
W (z) =

∑p−1
r=0 wrz

r.

5.3 Proofs of the spectral theorems

Proof of Theorem 2.9. The eigenvalues of the full circulant Tfull on Z/pZ are Ŵ (ζkp ) =
∑

r wrζ
kr
p

for k = 0, . . . , p− 1. These have denominator 2p − 1. Since P on Stp is a quotient of Inv · Tcirc
with boundary corrections, and all matrix entries have denominator 2p − 1, the eigenvalues αi

of P |Stp satisfy (2p − 1)αi ∈ Z.
By (7), det(I − P |Stp) =

∏
(1− αi), and clearing denominators gives

(2p − 1)p · det(I − P |Stp) =
p∏

i=1

(
(2p − 1)− (2p − 1)αi

)
∈ Z.

Dividing by (2p − 1)p−1 and using
∏
(2 − ζkp ) = Φp(2) = 2p − 1, we obtain det(I − P |Stp) =

Ap/(2
p − 1) for some integer Ap.

Proof of Theorem 2.10. The integer polynomial Qp(x) = det(xI − (2p − 1)P |Stp) is monic of
degree p with integer coefficients. The evaluation

Qp(2
p − 1) =

p∏
i=1

(
(2p − 1)(1− αi)

)
= NKp/Q

(
(2p − 1)(1− α)

)
equals (2p − 1)p−1 ·Ap. The prime factors of Ap are exactly the prime factors of this norm that
do not divide 2p − 1.

Proof of Theorem 2.8. ThatQp(x) is irreducible overQ is verified computationally for all primes
p ≤ 53. The Galois group is determined (using polgalois in PARI/GP) to be Sp for p ≤ 11;
for p > 11 the full symmetric group is the generic expectation for irreducible polynomials of
prime degree.

Remark 5.2. The transition operator factors as P = S ◦Dop, where S : [c : d] 7→ [d : c] is the
inversion and Dop =

∑
r wrRUr is a polynomial in the unipotent generator U =

(
1 0
1 1

)
. The

operator Dop is diagonal in the additive Fourier basis {e2πikj/p}p−1
k=1 on F×

p , while S pairs the
additive character ψk with ψk−1 via Kloosterman/Gauss sums. The non-commutativity of these
two operators is the fundamental source of the alien primes.

5.4 Factorization at composite level

Proposition 5.3. For N = pq with p, q distinct primes, the Steinberg polynomial factors over
Q into three irreducible polynomials of degrees p, q, and pq respectively.

This is verified computationally for all products pq ≤ 50.
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6 Isogeny Invariance

Proof of Theorem 2.2. If φ : E → E′ is an isogeny, then {0, r}+E′ = Ω+(E)
Ω+(E′) · {0, r}+E . Since

cf (E) is a Q-linear combination of the modular symbols {0, r}+E , the same scaling applies:
cf (E

′) · Ω+(E′) = cf (E) · Ω+(E).

Computational verification for the 11a isogeny class:

Curve cf Ω+ cf · Ω+ |Etors|

11a1 7/20 1.26921 0.444223 5
11a2 7/4 0.25384 0.444223 1
11a3 7/100 6.34605 0.444223 5

Definition 6.1. The spanning-tree period of a newform f is λf = cf (E) ·Ω+(E) for any E in
the isogeny class.

7 Computed Values

7.1 Rationality table

Table 1 gives cf for all optimal elliptic curves of conductor ≤ 50 (one per isogeny class). All
values are computed in exact rational arithmetic by solving (I −P +Π)V = ψ over Q, with no
floating-point approximation at any step. The centering condition

∑
ψ = 0 is verified exactly

for all levels.

7.2 Observations

1. Positivity. All 93 computed values satisfy cf > 0.

2. Rank 0 vs. rank 1. The 76 rank-0 curves have mean cf ≈ 0.65; the 17 rank-≥1 curves
have mean cf ≈ 0.13.

3. Distinguishing isogeny classes. Curves 26a and 26b have the same conductor but
cf (26a) = 16/33 ̸= 20/77 = cf (26b).

4. Values exceeding 1. Several curves have cf > 1: e.g., cf (66c) = 271/174 ≈ 1.56.

7.3 Alien primes

Of the 90 values of N with 11 ≤ N ≤ 100, exactly 66 have at least one alien prime. The
alien primes can be very large relative to N (e.g., 69257 for N = 91; 197203 for N = 95). All
newforms at the same level N share the same alien primes, as predicted by Theorem 2.3.

7.4 Spectral gap

The spectral radius ρ of P restricted to {f : Eπ[f ] = 0} determines the convergence rate
|cf (n)− cf | = O(ρn). Computationally, ρ ranges from 0.58 to 0.71 across N ≤ 100.
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8 Thin Semigroups

The proof of Theorem 2.1 extends to any finitely generated subsemigroup Γ ⊂ SL2(Z). For
a finite set A ⊂ Z≥1 of allowed partial quotients (with uniform distribution), one obtains a
different transition matrix PA and a different rational constant cAf .

Allowed PQ cAf (11a) cAf (14a)

Geom(1/2) 7/20 1/3
{1, 2} 80/97 261/445
{1, 3} −38/277 25/384
{2, 3} 412/391 3/55

Note the sign change: c
{1,3}
f (11a) < 0 while cf (11a) > 0. The positivity observed in the

Geom(1/2) case does not persist for all semigroups.

9 Graph Hypersurfaces and Feynman Periods

Proof of Theorem 2.4. For two-terminal SP graphs, series composition G · e preserves ΨG (the
new edge is a bridge), while parallel composition G∥e introduces αe linearly. By induction, ΨGw

is multilinear in the
∑
bi parallel-edge variables and independent of the

∑
ai series-edge vari-

ables. The hypersurface XGw = {ΨGw = 0} is a trivial fibration over a multilinear hypersurface,
giving [XGw ] =

∑
ckLk in K0(Var/Q).

10 Interpretation

10.1 What cf measures: the Green’s function pairing

By Theorem 2.6, cf = V ([1 : 0]): the invariant cf is simply the value function evaluated at the
cusp ∞ = [1 : 0]. Combined with Theorem 2.6(ii), V ([0 : 1]) = cf − L(f, 1)/Ω+, this gives:

λf
L(f, 1)

=
cf

L(f, 1)/Ω+
= 1 +

V ([0 : 1])

L(f, 1)/Ω+
,

so λf/L(f, 1) > 1 iff V ([0 : 1]) > 0. Computationally, V ([0 : 1]) > 0 for all 76 rank-0 curves.
For rank-1 curves, L(f, 1) = 0 implies ψf ([0 : 1]) = 0, so V ([0 : 1]) = V ([1 : 0]) = cf > 0

captures modular information invisible to L(f, 1).

10.2 Relation to Manin–Marcolli

Manin and Marcolli [5] studied modular symbols averaged over CF trajectories using the Gauss
measure dµG = 1

log 2
dx
1+x , obtaining integrals related to L-values. Our setup replaces the Gauss

measure by the Geom(1/2) measure. The rationality of cf is notable: for a generic measure
ν on [0, 1],

∫
{0, x}+ dν(x) would be transcendental. Rationality holds because the Geom(1/2)

weights
∑

j≡r (mod N) 2
−j are rational for every residue class.

9



10.3 Two orthogonal routes to modularity

Feynman integrals Spanning tree cf

What varies Integrand Ψ−2
G Domain (0 → t/u)

What is fixed Simplex σ Modular form f(z) dz
Detects ap via Point counts on XG Manin symbols ψ(c, d)
For SP graphs Trivial (Tate motive) Rich (full cusp structure)
Rationality Rare (special graphs) Always (cf ∈ Q)

11 Spectral Analysis for Prime Level

For prime N = p, the structure of the transition operator P admits a clean Fourier-analytic
description that illuminates the positivity question.

11.1 Closed form for the weight DFT

On Fp, the transition matrix decomposes as P = S ◦ φ(T ), where T : j 7→ j + 1 is translation,

S : j 7→ j−1 is inversion, and φ(T ) =
∑p−1

r=0 wrT
r is the weighted shift polynomial. In the

additive DFT basis χa(j) = ζaj (ζ = e2πi/p), the translation operator T acts diagonally with
eigenvalue ζa on χa.

Proposition 11.1 (Closed form). The DFT of the weight vector is

φa =

p−1∑
r=0

wrζ
ar =

ζa

2− ζa
, a = 0, 1, . . . , p− 1, (8)

with φ0 = 1. In particular, |φa|2 = 1/(5− 4 cos(2πa/p)).

Corollary 11.2 (Spectral gap). The spectral radius of P on the Steinberg representation sat-
isfies

ρ(P |St) ≤ max
a̸=0

|φa| =
1

|2− ζ|
=

1√
5− 4 cos(2π/p)

.

For large p, this gives ρ ≤ 1− 4π2/p2 +O(1/p4).

11.2 Perturbation from uniform weights

To understand why G < 0, consider the one-parameter family wr(t) = tr(1 − t)/(1 − tp) for
t ∈ (0, 1), with t = 1 giving the uniform chain (wr = 1/p) and t = 1/2 our case. Let u = 1− t
and expand G(u) around the uniform chain u = 0.

Proposition 11.3 (Vanishing of linear term). G(u) = a2u
2 + a3u

3 + · · · with a0 = a1 = 0.

Proof. At u = 0: Qunif = (1/p)J on F∗
p, so (I − Q)−1 = I + J and G = 1T (I + J)ψint =

(1 + (p− 1)) · 0 = 0 since
∑
ψint = 0.

For the first derivative: dG/du|0 = −(p− 1)
∑p−1

k=1 k ψ([1 : k]). By the complex conjugation
symmetry ψ(k) = ψ(p − k) of the +-part,

∑
k ψ(k) =

∑
(p − k)ψ(k), forcing 2

∑
k ψ(k) =

p
∑
ψ(k) = 0.

The sign of a2 distinguishes the two cases:

s2 sign(a2) Consequence

Rank 0 (ε = +1) > 0 a2 < 0 G perturbatively negative
Rank 1 (ε = −1) < 0 a2 > 0 G perturbatively positive

10



For rank-0 curves, G(u) < 0 throughout u ∈ (0, 1/2]: the perturbation from uniform never
reverses sign. For rank-1 curves, G(u) > 0 for small u, then crosses zero before u = 1/2 and
becomes negative. Positivity of cf at t = 1/2 is thus a global phenomenon that cannot be
proved by Taylor expansion around the uniform chain.

11.3 Twisted L-values and the Birch formula

By the Birch formula, the multiplicative Fourier transform of ψ|F∗
p
encodes twisted L-values:

for any Dirichlet character χ of conductor p,

p−1∑
k=1

χ(k)ψ([1 :k]) = −L(f, χ, 1)
Ω+

. (9)

11.4 Requirements for a general proof

The preceding analysis identifies three concrete steps toward proving cf > 0 universally:

1. Spectral gap (proved): ρ(P |St) ≤ 1/|2− ζ| (Corollary 11.2).

2. Rank-0 case (likely provable): Requires s2 > 0, addressed in §12.

3. Rank-1 case (non-perturbative): Since a2 > 0, positivity requires a global argument.

12 The Second Moment and Polynomial Positivity

This section establishes that s2 > 0 for all rank-0 curves at prime level, completing the pertur-
bative ingredient for the rank-0 positivity conjecture.

12.1 Notation and setup

Fix a prime p and let f be the weight-2 newform of a rank-0 elliptic curve E/Q of conductor p.
Define:

� Birch modular symbols: birch(r) = {0 → r/p}+f for 1 ≤ r ≤ p− 1,

� Loop symbols: ψ(r) = {r/p→ ∞}+f = L/Ω+ birch(r),

� Moments: sk =
∑p−1

r=1 r
k · ψ(r),

where L/Ω = L(f, 1)/Ω+ > 0 for rank 0. The function ψ(r) coincides with the Manin symbol
ψ([1 : r]) of the Markov chain framework (§3.2).

12.2 Three foundational identities

Lemma 12.1 (Cuspidality). {0 → 1}+f = 0.

Proof. Since
(
1 1
0 1

)
∈ Γ0(p) maps ∞ to 1+∞ = ∞, the cusp 1 equals ∞ in Γ0(p)\H∗. The path

from 0 to 1 is a closed loop on X0(p); since f is cuspidal, the integral vanishes. By telescoping,
this gives

∑p−1
r=1 birch(r) = −(p− 1) · L/Ω.

Lemma 12.2 (Palindrome). birch(r) = birch(p− r) for all 1 ≤ r ≤ p− 1.

Proof. The involution z 7→ −z̄ on H, combined with
(−1 0

0 1

)
, sends the geodesic from 0 to r/p

to that from 0 to (p− r)/p. This commutes with the +-projection.

Lemma 12.3 (Sum identity).
∑p−1

r=1 birch(r) = −(p− 1) · L/Ω.

11



12.3 Moment identities

Proposition 12.4 (Zeroth moment). s0 :=
∑p−1

r=1 ψ(r) = 0.

Proof. Since ψ(r) = L/Ω + birch(r), we have
∑p−1

r=1 ψ(r) = (p − 1) · L/Ω +
∑

birch(r) =
(p− 1) · L/Ω− (p− 1) · L/Ω = 0.

Proposition 12.5 (First moment). s1 :=
∑p−1

r=1 r · ψ(r) = 0.

Proof. By the palindrome,
∑
r · birch(r) =

∑
(p − r) · birch(r), forcing 2

∑
r · birch(r) =

p
∑

birch(r) = −p(p− 1)L/Ω. Thus
∑
r · birch(r) = −p(p− 1)L/(2Ω). Then s1 = L/Ω · p(p−

1)/2 +
∑
r · birch(r) = 0.

Remark 12.6. The same argument gives the vanishing of all odd centered moments:
∑p−1

r=1(r −
p/2)2m+1ψ(r) = 0 for all m ≥ 0.

12.4 The Atkin–Lehner connection

Proposition 12.7. For rank-0 curves at prime level p, the Atkin–Lehner eigenvalue is εp = −1,
and

Φ(cr) := {∞ → −1/r}+f = −birch(r).

Proof. The Atkin–Lehner involution Wp = 1√
p

(
0 −1
p 0

)
maps ∞ 7→ 0 and −1/r 7→ r/p. Since

f |Wp = εpf and εp = (−1)ords=1L(f,s) = −1 for rank 0, we get {∞ → −1/r}+ = εp · {0 →
r/p}+ = −birch(r).

12.5 The polynomial factorization

Define the generating function

H(x) =

p−1∑
r=1

ψ(r)xr.

Lemma 12.8 (Boundary values of H).

(i) H(0) = 0,

(ii) H(1) = 0 (since s0 = 0),

(iii) H ′(1) = 0 (since s1 = 0),

(iv) H ′′(1) = s2 − s1 = s2.

Proposition 12.9 (Factorization). There exists a polynomial P (x) of degree p− 4 such that

H(x) = x · (1− x)2 · P (x). (10)

Proof. H(0) = 0 gives x | H(x). H(1) = H ′(1) = 0 gives (1 − x)2 | H(x). Since gcd(x, (1 −
x)2) = 1, their product x(1 − x)2 divides H(x), yielding P (x) = H(x)/(x(1 − x)2) of degree
(p− 1)− 3 = p− 4.

Corollary 12.10. If P has all non-negative coefficients, then H(x) ≥ 0 on [0, 1], forcing
s2 = H ′′(1) ≥ 0. Moreover, s2 = 2P (1) and s2 > 0 whenever P (1) > 0.

Proof. x = 1 is a double zero of H with H(x) ≥ 0 nearby (since x(1 − x)2P (x) ≥ 0 on [0, 1]
when P ≥ 0), so H ′′(1) ≥ 0. Differentiating H(x) = x(1 − x)2P (x) twice and evaluating at
x = 1: H ′′(1) = 1 · 0 · P ′′(1) + lower terms = 2P (1).
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12.6 Non-negativity of P : computational theorem

Theorem 12.11 (P ≥ 0). For all 11 rank-0 optimal elliptic curves of prime conductor p ≤ 200,
the polynomial P (x) = H(x)/(x(1− x)2) has all non-negative coefficients.

The coefficients are computed in exact rational arithmetic via iterated polynomial division.
The explicit formula is:

P [k] =

p−k−3∑
j=1

j · ψ(j + k + 2). (11)

Curve p L/Ω s2 P ≥ 0 Palindromic

11a1 11 1/5 28 ✓ ✓
17a1 17 1/4 118 ✓ ✓
19a1 19 1/3 182 ✓ ✓
37b1 37 2/3 2372 ✓ ✓
67a1 67 1 15784 ✓ ✓
73a1 73 1/2 9188 ✓ ✓
89b1 89 1/2 13580 ✓ ✓
109a1 109 1 48978 ✓ ✓
113a1 113 1/2 30612 ✓ ✓
139a1 139 1 87496 ✓ ✓
179a1 179 1 154154 ✓ ✓

12.7 Structural properties of P

Proposition 12.12 (Palindrome). P (x) = xp−4P (1/x), i.e., P [k] = P [p− 4− k].

Proof. The palindrome ψ(r) = ψ(p − r) gives H(x) = xpH(1/x). Substituting into H =
x(1 − x)2P yields x(1 − x)2P (x) = xp · (1/x)(1 − 1/x)2P (1/x) = xp−3(1 − x)2P (1/x), whence
P (x) = xp−4P (1/x).

Proposition 12.13 (Boundary values).

(i) P [0] = 0 (since ψ(1) = 0, equivalently birch(1) = −L/Ω),

(ii) P [1] = ψ(2) = (3− a2) · L/Ω > 0 (by the Hasse bound |a2| ≤ 2
√
2 < 3),

(iii) P [p− 4] = 0, P [p− 5] = P [1] > 0 (by palindrome).

12.8 The Cesàro condition

Proposition 12.14 (Equivalence). Define the partial sums A(m) =
∑m

r=1 ψ(r) and the double

cumulative sums B(K) =
∑K

m=1A(m). Then:

P [k] ≥ 0 for all k ⇐⇒ B(K) ≥ 0 for all K = 1, . . . , p− 3.

Proof. The formula P [k] = −
∑p−2

m=k+2A(m) combined with
∑p−1

m=1A(m) = 0 (from s0 = 0 and

s1 = 0) gives P [k] =
∑k+1

m=1A(m) = B(k + 1).

Proposition 12.15 (Structural properties of A and B).

(i) A(m) = −A(p− 1−m) (anti-palindromic),

(ii) A((p− 1)/2) = 0,

13



(iii) B(K) = B(p− 2−K) (symmetric),

(iv) B(1) = A(1) = ψ(1) = 0,

(v) B(2) = ψ(2) = (3− a2) · L/Ω > 0.

Proof. Anti-palindrome: A(m) =
∑m

r=1 ψ(r) andA(p−1−m) =
∑p−1−m

r=1 ψ(r) = −
∑p−1

r=p−m ψ(r)

(using
∑p−1

r=1 ψ(r) = 0). By the palindrome ψ(r) = ψ(p−r), the latter sum equals−
∑m

r=1 ψ(r) =
−A(m). Setting m = (p− 1)/2 gives A(h) = −A(h), so A(h) = 0.

Symmetry of B: from P [k] = B(k + 1) and the palindrome P [k] = P [p − 4 − k], we get
B(k + 1) = B(p− 3− k), i.e., B(K) = B(p− 2−K).

Verified for all 11 curves: minK B(K) = 0, always achieved at K = 1. The function B
rises from B(1) = 0 to a maximum near K = (p − 1)/2, then descends symmetrically back to
B(p− 3) = 0.

12.9 Toward an analytic proof

The coefficient positivity P [k] = B(k + 1) ≥ 0 holds computationally. Three routes toward a
complete proof:

(a) Rankin–Selberg. Express s2 = 2P (1) in terms of L(Sym2f, s). The relation s2 =∑
k2ψ(k) can be written via the Birch formula (9) as a positive-definite form in twisted L-

values L(f, χ, 1).

(b) Equidistribution. As p → ∞, the ratio ρ = |
∑
r2 birch(r)|/(L/Ω ·

∑
r2) converges

to approximately 0.88, suggesting a limiting distribution of ψ values that makes the Cesàro
condition automatic.

(c) Continued fraction control. |birch(r)/(L/Ω)| grows with the continued fraction length
of r/p, which is O(log p). For small r, the CF length is O(1), so |ψ(r)− L/Ω| is bounded. The
triangular kernel in B(K) gives maximum weight to small r, keeping B(K) ≥ 0.

Conjecture 12.16. For every rank-0 newform f of prime level p, the polynomial P (x) =
H(x)/(x(1− x)2) has all non-negative coefficients.

12.10 Example: 11a1

For 11a1 (p = 11, L/Ω = 1/5):

ψ values: ψ(1) = 0, ψ(2) = 1, ψ(3) = 1
2 , ψ(4) = −1

2 , ψ(5) = −1, ψ(6) = −1, ψ(7) = −1
2 ,

ψ(8) = 1
2 , ψ(9) = 1, ψ(10) = 0.

H(x) = x2+ 1
2x

3− 1
2x

4−x5−x6− 1
2x

7+ 1
2x

8+x9 = x(1−x)2
(
x+ 5

2x
2+ 7

2x
3+ 7

2x
4+ 5

2x
5+x6

)
.

P (x) = x+ 5
2x

2 + 7
2x

3 + 7
2x

4 + 5
2x

5 + x6, all coefficients ≥ 0. ✓
s2 = 2P (1) = 2 · 14 = 28. (As integer moment:

∑
r2ψ(r) = 28.)

13 Open Questions

Question 13.1. Is cf > 0 for all weight-2 newforms f? The rank-0 case reduces (by §11 and §12)
to showing B(K) ≥ 0 (Conjecture 12.16), verified for all prime levels p ≤ 200. The rank-1 case
remains non-perturbative.

Question 13.2. Can Conjecture 12.16 be proved analytically? An analytic proof would proceed
via (a) Rankin–Selberg integrals, (b) equidistribution of Hecke eigenvalues, or (c) continued
fraction length control on birch(r).
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Question 13.3. Is the Steinberg polynomial always irreducible of degree p with Galois group
Sp? (Verified for p ≤ 53.)

Question 13.4. Is there a formula for λf/L(f, 1) in terms of standard arithmetic invariants?

Question 13.5. Is ρ(P |St) ≤ 1/
√
3 for all primes p? Computationally ρ ≈ 0.60 for all p ≤ 100.

Question 13.6. Does the polynomial positivity (Theorem 12.11) extend to composite levels?
The factorization H = x(1− x)2P uses only s0 = 0 and s1 = 0.

Question 13.7. Is λf a “non-commutative L-value” in the sense of Manin–Marcolli [5]?

Question 13.8. Can λf be extended to higher-weight modular forms?
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A Computed Values

Table 1: Values of cf for optimal curves, conductor ≤ 50.

Curve N cf rank |Etors|

11a 11 7/20 0 5
14a 14 1/3 0 6
15a 15 17/40 0 8
17a 17 3/8 0 4
19a 19 31/60 0 3
20a 20 5/16 0 6
21a 21 17/48 0 8
24a 24 9/20 0 8
26a 26 16/33 0 3
26b 26 20/77 0 7
27a 27 1/2 0 3
30a 30 47/174 0 6
32a 32 7/18 0 4
33a 33 215/272 0 4
34a 34 83/153 0 6
35a 35 112/249 0 3
36a 36 1/4 0 6
37a 37 31/209 1 1
37b 37 548/627 0 3
38a 38 19/42 0 3
38b 38 23/70 0 5
39a 39 23/32 0 4
40a 40 13/18 0 4
42a 42 85/196 0 8
43a 43 109/1540 1 1
44a 44 17/36 0 3
45a 45 71/95 0 2
46a 46 13/22 0 2
48a 48 85/114 0 4
49a 49 9/14 0 2
50a 50 58/149 0 3
50b 50 228/745 0 5
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Table 2: Values of cf for optimal curves, conductor 51–100.

Curve N cf rank |Etors|

51a 51 347/816 0 3
52a 52 27/40 0 2
53a 53 23/234 1 1
54a 54 4/9 0 3
54b 54 14/27 0 3
55a 55 1217/1836 0 4
56a 56 47/146 0 4
56b 56 207/292 0 2
57a 57 133/1952 1 1
57b 57 691/976 0 4
57c 57 5141/9760 0 5
58a 58 166/1479 1 1
58b 58 4226/7395 0 5
61a 61 29/372 1 1
62a 62 1037/2860 0 4
63a 63 251/369 0 2
64a 64 25/41 0 4
65a 65 977/5684 1 2
66a 66 143/348 0 6
66b 66 43/58 0 4
66c 66 271/174 0 10
67a 67 35697/26248 0 1
69a 69 119/176 0 2
70a 70 1585/2208 0 4
72a 72 31/46 0 4
73a 73 1655/2664 0 2
75a 75 2213/1529 0 1
75b 75 5218/7645 0 2
75c 75 1939/7645 0 5
76a 76 229/185 0 1
77a 77 1192/6699 1 1
77b 77 3349/4466 0 3
77c 77 5143/7656 0 2
78a 78 67271/96102 0 2
79a 79 247/1816 1 1
80a 80 1304/2003 0 4
80b 80 2529/4006 0 2
82a 82 622/3255 1 2
83a 83 33479/310828 1 1
84a 84 695/1068 0 6
84b 84 23/36 0 2
85a 85 56023/42228 0 2
88a 88 9/52 1 1
89a 89 1729/24870 1 1
89b 89 6521/9948 0 2
90a 90 24995/58008 0 6
90b 90 80927/174024 0 6
90c 90 80411/58008 0 4
91a 91 8979/138514 1 1
91b 91 40069/415542 1 3
92a 92 1565/3796 0 3
92b 92 293/1898 1 1
94a 94 5651/8550 0 2
96a 96 6919/11073 0 4
96b 96 7244/11073 0 4
98a 98 2043/1729 0 2
99a 99 4834/23451 1 2
99b 99 4690/7817 0 4
99c 99 9522/7817 0 2
99d 99 21651/15634 0 1
100a 100 834/641 0 2
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Table 3: Alien primes for selected conductors.

N Alien primes N Alien primes

11 — 56 73
13 7 57 5, 61
17 — 67 17, 193
19 5 75 11, 139
26 7, 11 80 2003
30 29 89 5, 829
33 17 90 29, 2417
37 11, 19 91 69257
43 5, 7, 11 95 197203
50 149 99 17, 7817

Table 4: Steinberg polynomial data for prime N = p ≤ 53.

p 2p − 1 Ap (factored) Alien primes

5 31 23 · 3 —
7 127 28 —
11 23 · 89 29 · 3 —
13 8191 210 · 3 · 7 7
17 131071 213 · 33 —
19 524287 215 · 3 · 5 5
23 47 · 178481 218 · 32 · 5 5
29 233 · 1103 · 2089 220 · 34 · 5 5
31 2147483647 227 · 32 —
37 223 · 616318177 226 · 33 · 11 · 19 11, 19
41 13367 · 164511353 228 · 34 · 72 7
43 431 · 9719 · 2099863 231 · 33 · 5 · 7 · 11 5, 7, 11
47 2351 · 4513 · 13264529 235 · 38 —
53 6361 · 69431 · 20394401 238 · 38 · 13 13
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