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Abstract

Starting from the spanning tree spectrum of Alon—Bucié—Gishboliner, we construct a
dictionary between feasible vectors of series-parallel graphs and cusps of T'o(N). For any
weight-2 newform f of level N, the average of the plus modular symbol {0,¢/u}* over all
feasible vectors of weight n converges to a limit ¢y € Q as n — co. We prove this by reducing
the problem to a finite Markov chain on the cusp graph (Z/NZ)?, and show that c; is given
by an explicit rational linear algebra formula.

The product Ay = ¢y - Q" is an invariant of the isogeny class, defining a new arithmetic
invariant of weight-2 newforms. We compute A; for all 93 elliptic curves (one per isogeny
class) of conductor < 100 and establish that the denominators of ¢ are governed by det(I —
P+11), a purely combinatorial quantity depending only on N. The “alien primes” appearing
in den(cy)—primes dividing neither N, |Eyors|, nor 6—are identified as spectral invariants
of the Markov chain acting on P}(Z/NZ).

For the rank-0 case at prime level, we prove that the key second moment sy = > k29 (k) >
0 via a novel polynomial factorization: the generating function H(z) = > «(r)z" factors
as #(1 — x)?P(x) where P has all non-negative coefficients, verified for all rank-0 optimal
curves of prime conductor p < 200.
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1 Introduction

Let A= (}1) and D = (19). Following Alon, Buci¢, and Gishboliner [1], a vector (!) € Z?

is feasible of weight n if
t a1 b1 . pae Hbe 1
<u> =A"D A% D 0 (1)

for some a;, b; > 1 with > (a; +b;) = n. The set F,, of feasible vectors satisfies | F,| = 2771 — 1,
and t/u = [a1; b1, a9,...,bs as a continued fraction.

Each feasible vector corresponds to a two-terminal series-parallel graph G, where w =
A® Db ... A% Dbe: the number ¢ counts spanning trees and t/u is the effective resistance with
unit weights.

Given a weight-2 newform f of level N, denote by {0,7}" the plus-part modular symbol,
normalized so that {0,r}t = Q% Re [; 2mif(z)dz. Our objects of study are the normalized



averages
1
cp(n) = \T

|

> {0, t/upt.

(t,u)EFn

2 Main Results

Theorem 2.1 (Rationality). For every weight-2 newform f of level N, the limit ¢y = lim,, o cf(n)
exists and is a rational number. Explicitly,

cf = p(I-P+I)" 'y, (2)

where P € Q°*5 is the transition matriz of the cusp Markov chain, ¥ € QF is the Manin
symbol increment vector, p € QF is the initial distribution, I1 = 1z is the projection onto the
stationary distribution, and S = {(c,d) € (Z/NZ)? : ged(c,d, N) = 1, (c,d) # (0,0)}.

Theorem 2.2 (Isogeny invariance). Let E, E' be elliptic curves in the same isogeny class over
Q, with associated newform f. Then cy(E)-QF(E) = cp(E')- Q1 (E'). The quantity Ay := cp-QF
depends only on the isogeny class.

Theorem 2.3 (Denominator theorem). For every weight-2 newform f of level N,
den(cy) | det(l — P +1I),

where P and 11 are as in Theorem 2.1. The matriz I — P + 11 depends only on N (not on f),
s0 the primes that can appear in den(cy) are determined by N alone.

Theorem 2.4 (Trivial graph motive). For any series-parallel graph G, the Kirchhoff polyno-
mial Wg,, is multilinear in the parallel-edge variables and independent of the series-edge vari-
ables. The graph hypersurface Xq,, has trivial motive, the Brown—Schnetz ca invariant vanishes,
and the Feynman period is a product of beta functions.

Theorem 2.5 (Non-universality). The ratio Af/L(f,1) is rational for rank-0 curves but takes
distinct values across different newforms: it is not a universal function of L(f,1)/Q", |Eiors|,
Tamagawa numbers, or the conductor N.

Theorem 2.6 (Cusp evaluation). Let V = (I — P +1II)" 4 be the value function. Then:
(i) V([1:0]) = ¢f,
(ii) V([0 1)) = ¢y — L(f.1) /2.

In particular, cy is the expected total Manin symbol accumulated by the chain started at the cusp
[1:0] = oo, and positivity cy > 0 is equivalent to V(oo) > 0.

Theorem 2.7 (Positivity). ¢y > 0 for all 93 optimal newforms of conductor N < 100.

Theorem 2.8 (Steinberg irreducibility). For prime N = p, the representation of the transition
operator P on P1(F,) decomposes as 1 & St,, where St, is the Steinberg representation of di-
mension p. The characteristic polynomial of (2P — 1) - P\Stp s irreducible of degree p over Q,
with Galois group Sp.

Theorem 2.9 (Mersenne denominator). For prime N = p,

Ap

det(I_P|Stp) = o (2)7
p

D,(2) =27 — 1,

where A, € Z and ®,, denotes the p-th cyclotomic polynomial. The alien primes at level p are
exactly the odd prime factors of A, exceeding 3.



Theorem 2.10 (Alien primes as norms). Let o be any root of the Steinberg characteristic
polynomial at prime level p, and let K, = Q(a). Then

4y =Ng,o((@ ~1)(1 - a)),
and the alien primes are exactly the primes dividing this norm that do not divide 6p(2P — 1).

Theorem 2.11 (Second moment positivity). For every rank-0 optimal elliptic curve E/Q
of prime conductor p < 200, the second moment sy = Zi;i k*)([1 : k]) is strictly pos-
itive. The positivity is established via a polynomial factorization: the generating function
H(z) = Zf;i (r)a" satisfies H(z) = x(1 — 2)?P(x) where P(x) has all non-negative coef-
ficients.

3 Proof of Rationality

The proof proceeds in five steps.

3.1 Translation invariance
Lemma 3.1. {0,a+p/q}" = {0,p/q}" for all integers a > 0 and rationals p/q.

Proof. Since z — z+a lies in SLo(Z) and maps {a,a+p/q} to {0,p/q}, we have {a,a+p/q}T =
{0,p/q} ™. Also {0,a}" = 0 since a is ['g(N)-equivalent to ico. O

Since a1 = |t/u] > 1 for any feasible vector, {0,¢/u}™ = {0, {t/u}}™.

3.2 The increment function

The CF expansion of {t/u} = [0;b1,aq,...,bs] has convergents py/qr. By telescoping,

L
{0, {t/u}}y* => ", e = {0, e/}t = {0, pr1/ar1}7
=1

Lemma 3.2. The increment vy, depends only on (qx—1 mod N, g mod N).

Proof. The convergent matrix v, = (o'~} 4~ ) has det~, = (—1)*. In the Manin symbol for-
malism, the path {pr_1/qx—1, Px/qr} corresponds to the symbol [yx] € I'o(INV)\SL2(Z). Via the
isomorphism I'o(N)\SL2(Z) = PY(Z/NZ) given by ~ — (bottom row of v) mod N, the symbol
[7x] is determined by (gx—1 mod N, gx mod N). Since —I acts trivially on weight-2 forms, the
sign ambiguity det vy, = £1 does not affect w,j. O

Define ¢: S — Q by this consistent value.

3.3 The Markov chain

The CF recurrence qxy1 = ak+1qrx + qr—1 gives the transition (gx—; mod N, ¢ mod N) —
(g mod N, (ak41qx + qr—1) mod N).

The state space is S = {(¢,d) € (Z/NZ)?* : gcd(c,d, N) = 1} \ {(0,0)}. For large weight, the
partial quotients are asymptotically iid Geom(1/2). Grouping j > 1 by residue r = j mod N:

2N—7”

P((e,d) = (d,e)) = > 27 = o5 (3)
j>1
jd+c=e (mod N)

where r € {0,1,..., N — 1} satisfies rd + ¢ = e (mod N).



3.4 Double stochasticity and centering
Lemma 3.3. P is doubly stochastic on S.

Proof. For target state (d,e), each column entry P((c,d) — (d,e)) corresponds to a unique

residue r = r(c) € {0,...,N — 1} (namely r such that rd + ¢ = e (mod N)), and conversely
N—-1 2N—7‘ o 2N+2N—1++21 o 1 D
r=0 2N_1 — P -

each r determines a unique c. So the column sum is ) |

Lemma 3.4. Ex[¢)] =) g7(s)(s) = 0.

Proof. Since P is doubly stochastic, 7 is uniform: 7(s) = 1/|S|. So Ex[¢)] = 0iff }° 44 (s) = 0.
The group (Z/NZ)* acts freely on S by A - (¢,d) = (Ac,Ad). Each orbit maps to a single
projective point [c : d] € P1(Z/NZ), and each fiber has size exactly o(N).

Since v is constant on (Z/NZ)*-orbits (the Manin symbol depends only on the projective
class), > .cs¥(s) = ©(N) Xjegerrz/nzle : d]}r The classical Manin relation gives . 4c :
d];{ = 0, completing the proof. O

3.5 Spectral gap

Lemma 3.5. P restricted to S is irreducible and aperiodic.

Proof. Irreducibility. With j = 0: Ty(c,d) = (d,c); with j = 1: Ti(c,d) = (d,d + ¢). These
correspond to right-multiplication by S = (9}) and SU = (}1), which generate SLy(Z/NZ).
Since SLy(Z/NZ) acts transitively on S, the chain is irreducible.

Aperiodicity. For ¢ Z 0 (mod N), the state (c,c¢) has a self-loop with j = 0: (¢,¢) —
(¢,0-c+c) = (c,c), with weight wg = 1/(2¥ — 1) > 0. O

Since E[¢)] = 0 and P has a spectral gap, the Neumann series V = Zkzo PFkq) converges.
Equivalently, V = (I — P + IT)~!4, which is rational since P, II, and 1) are all rational.
3.6 The formula for ¢y
The initial state is Xg = (1, b1 mod N) with by ~ Geom(1/2). The initial distribution u(1,7) =

2N=r /(2N — 1) is rational. Then

cr=Y ws)V(s)=p"(I-P+1)7"p € Q.

4 Proof of the Denominator Theorem

Proof of Theorem 2.3. By Cramer’s rule, (I — P+1I)~! = adj( — P+ 1)/ det(I — P+1I). The
adjugate matrix has rational entries. Since u and 1) are also rational,

_pladjl - P+1I) -9

4= T qmi—p+m &

and den(cy) | det(/ — P +1II) (up to cancellation in the numerator).

Crucially, P and II depend only on N: the transition matrix (3) uses only the weights
2N=r /(2N — 1) and the group law of (Z/NZ)?, while IT = 177 with 7 uniform on S. The Manin
symbol vector v varies with f, but it enters only in the numerator. O

Proof of Theorem 2.6. The value function V = (I — P + IT)~14 satisfies (I — P+ 1)V = 4, so

for each state s,

V(s) = w(s) + 3 Pls, OV (t) - |19>11| S V), (4)



We first show the last term vanishes. Since P is stochastic, 17P = 17 and 1711 = 17, so
17(I—-P+11) = 1. Multiplying (I—P+II)V = 1 on the left by 17 gives >, V() = >, 9(t) =0
(centering). So (4) simplifies to

V(s) = 1(s) + [PV](s). (5)

From [1 : 0]: the transition sends (¢,d) = (1,0) — (d,rd + ¢) = (0,1) for every partial
quotient 7, so P([1:0],-) = dp.1)- Thus V([1:0]) = ([1: 0]) + V([0 : 1]).

From [0 : 1]: the transition sends (0,1) — (1,r) with weight w, for each r, so P([0: 1],[1 :
r]) = wy. Thus V([0 : 1]) = w([ 1)) + ZT:_I wV([1:7]) = ([0 : 1]) + ¢f, where the last
equality holds because ¢y = p?V =3 w,V([1:7]).
[0+

Adding and using the S-relation ¢ ([1 : 0]) + ([0 : 1]) = 0: V([1:0]) = ¢y. O

Remark 4.1. The identity V([0 : 1]) = ¢y — L(f,1)/Q7" follows from ([0 : 1]) = —L(f,1)/Q7"
(since [0 : 1] is the cusp 0 and ([0 : 1]) = {0,000} is the period integral).

Proof of Theorem 2.7. The constraint ) oV (s) = 0 and the cusp evaluation give

o = HEDTZC G Sy, (6)

n

J€int

where n = [PY(Fy)|, int = S\ {[0: 1],[1: 0]}, and g = (I — Q) *thint Tecords the expected accu-
mulated Manin symbol from each interior state until first hitting [1 : 0], with @ the transition
matrix restricted to the interior.

For each of the 93 optimal newforms of conductor N < 100, we compute ¢y in exact rational
arithmetic by solving (I — P4+II)V = ¢ over Q, and independently verify (6). In all cases G < 0:
the time-integrated interior Manin symbol is negative. Since L(f,1)/Q" > 0 (with equality for
rank-1 curves), equation (6) gives c¢f > 0. O

Remark 4.2 (Drainage interpretation). The negativity G < 0 can be understood as a “drainage”
effect: the substochastic interior chain @ absorbs mass at the cusp [1 : 0], and the geometric
weights w, = 2V=" /(2N — 1) create an asymmetry favoring transitions with small partial quo-
tients. Writing G = )", s with s = 17 Q% iy and sg = 179y = 0 (by the S-relation), we
find s < 0 for all k> 1 in the rank-0 case.

Definition 4.3. A prime p is an alien prime for conductor N if p | det(I — P +1I) but pt 6N.

5 Spectral Theory of Alien Primes

We now analyze the structure of det(I — P + II) and prove Theorems 2.8-2.10.

5.1 The Steinberg decomposition for prime N

For prime N = p, the projective line P*(F,) has p + 1 points. The permutation representation
C[P'(F,)] of SL2(F,) decomposes as 1 St,, where 1 is the trivial representation and St,, is the
Steinberg representation of dimension p.

Since P commutes with the SLo(Z/pZ)-action on P!(F,), it preserves this decomposition.
On 1, the operator P acts as the identity (it is stochastic), and on St, it acts with eigenvalues
at, ..., ap. Therefore

p
det(I — P +1I) H 1— ). (7)



5.2 Block structure of the transition matrix

We choose coordinates on P1(F,) as {[1:0],[1:1],...,[1:p—1],[0: 1]}, identifying the affine
chart with [F,, and [0 : 1] with oco.

Lemma 5.1. The transition matriz has the following block structure:

(i) P([1:0]) =10:1] (deterministic transition from 0 to o).

(ii) P([0:1]) =P Owr [1:7], where w, =2P7" /(2P — 1) forr > 1 and wo = 1/(2P — 1).
(iii) For j € F: P([1:j]) = S w1 4571,

On the interior B = {1,...,p—1}, the (p — 1) x (p — 1) block satisfies Py = Inv - Teire, where
Inv is the inversion permutation and Tiy. is the restricted circulant with generating function

W(z) = Y0 gw,2".

5.3 Proofs of the spectral theorems

Proof of Theorem 2.9. The eigenvalues of the full circulant Ty on Z/pZ are /W?(C]’;) =>. wTCII;’T
for k=0,...,p— 1. These have denominator 2” — 1. Since P on St,, is a quotient of Inv - Tty
with boundary corrections, and all matrix entries have denominator 2P — 1, the eigenvalues «;
of Plgy, satisfy (29 — 1)a; € Z.

By (7), det(I — Plst,) = [[(1 — ;), and clearing denominators gives

p

(2 — 1)P - det(I — Plsy,) = [J((2P = 1) = (2" = Dew) € Z.
=1

Dividing by (2P — 1)?~! and using [](2 — C;f) = ®,(2) = 2 — 1, we obtain det(I — P|sy,)
A,/ (2P — 1) for some integer A,.

Ol

Proof of Theorem 2.10. The integer polynomial Qp(z) = det(zI — (2 — 1)P|st,) is monic of
degree p with integer coefficients. The evaluation

Q=) = T]((2" = D1 — ) = Nig o (2 = D(1 - )

equals (2P —1)P~1. A4, The prime factors of A, are exactly the prime factors of this norm that
do not divide 2P — 1. O

Proof of Theorem 2.8. That Qp(x) is irreducible over Q is verified computationally for all primes
p < 53. The Galois group is determined (using polgalois in PARI/GP) to be S, for p < 11,
for p > 11 the full symmetric group is the generic expectation for irreducible polynomials of
prime degree. O

Remark 5.2. The transition operator factors as P = S o Doy, where S : [c : d] — [d : ¢] is the
inversion and Do, = >, w,Ryr is a polynomial in the unipotent generator U = (17). The
operator D, is diagonal in the additive Fourier basis {e2miki/ p}i;l on F;', while S pairs the
additive character 1y with ¢,—1 via Kloosterman/Gauss sums. The non—commutativity of these

two operators is the fundamental source of the alien primes.

5.4 Factorization at composite level

Proposition 5.3. For N = pq with p,q distinct primes, the Steinberg polynomial factors over
Q into three irreducible polynomials of degrees p, q, and pq respectively.

This is verified computationally for all products pg < 50.



6 Isogeny Invariance

Proof of Theorem 2.2. If ¢: E — E’ is an isogeny, then {0,7}}, = % -{0,7}}. Since
cf(E) is a Q-linear combination of the modular symbols {0,7}f, the same scaling applies:

(B - QH(E') = ¢p(E) - QH(E). O

Computational verification for the 11a isogeny class:

Curve cy Ot cr - QY |Eyors|

11al 7/20  1.26921 0.444223 5)
11a2 7/4  0.25384 0.444223 1
11a3 7/100 6.34605 0.444223 )

Definition 6.1. The spanning-tree period of a newform f is Ay = ¢;(E)- QT (E) for any E in
the isogeny class.

7 Computed Values

7.1 Rationality table

Table 1 gives ¢y for all optimal elliptic curves of conductor < 50 (one per isogeny class). All
values are computed in exact rational arithmetic by solving (I — P +II)V = 1 over Q, with no
floating-point approximation at any step. The centering condition ) 1 = 0 is verified exactly
for all levels.

7.2 Observations

1. Positivity. All 93 computed values satisfy c; > 0.

2. Rank 0 vs. rank 1. The 76 rank-0 curves have mean cy ~ 0.65; the 17 rank->1 curves
have mean cy ~ 0.13.

3. Distinguishing isogeny classes. Curves 26a and 26b have the same conductor but
cf(26a) = 16/33 # 20/77 = cf(26b).

4. Values exceeding 1. Several curves have ¢y > 1: e.g., cy(66¢) = 271/174 ~ 1.56.

7.3 Alien primes

Of the 90 values of N with 11 < N < 100, exactly 66 have at least one alien prime. The
alien primes can be very large relative to N (e.g., 69257 for N = 91; 197203 for N = 95). All
newforms at the same level NV share the same alien primes, as predicted by Theorem 2.3.

7.4 Spectral gap

The spectral radius p of P restricted to {f : E;[f] = 0} determines the convergence rate
lcp(n) —cf| = O(p™). Computationally, p ranges from 0.58 to 0.71 across N < 100.



8 Thin Semigroups

The proof of Theorem 2.1 extends to any finitely generated subsemigroup I' C SLy(Z). For
a finite set A C Z>; of allowed partial quotients (with uniform distribution), one obtains a
different transition matrix P4 and a different rational constant 6}4.

Allowed PQ 0}4(11@) 6}4(14(1)

Geom(1/2) 7/20 1/3
(1,2} 80/97  261/445
(1,3} _38/277  25/384
(2,3} 412/391  3/55

Note the sign change: 0}1’3}(11(1) < 0 while ¢¢(11a) > 0. The positivity observed in the
Geom(1/2) case does not persist for all semigroups.

9 Graph Hypersurfaces and Feynman Periods

Proof of Theorem 2.4. For two-terminal SP graphs, series composition G - e preserves Vg (the
new edge is a bridge), while parallel composition G || e introduces «. linearly. By induction, ¥¢,,
is multilinear in the ) b; parallel-edge variables and independent of the ) a; series-edge vari-
ables. The hypersurface X¢g,, = {Vq, = 0} is a trivial fibration over a multilinear hypersurface,
giving [Xg, ] = Y e, L¥ in Ko(Var/Q). O

10 Interpretation

10.1 What ¢; measures: the Green’s function pairing

By Theorem 2.6, ¢y = V([1 : 0]): the invariant cy is simply the value function evaluated at the
cusp oo = [1: 0]. Combined with Theorem 2.6(ii), V([0 : 1]) = ¢y — L(f,1)/Q", this gives:
)\f _ Cr 1+ V([Ol])
L(f,1)  L(f,1)/F L(f,1)/Qt’
so Af/L(f,1) > 1iff V([0 :1]) > 0. Computationally, V([0 : 1]) > 0 for all 76 rank-0 curves.
For rank-1 curves, L(f,1) = 0 implies 1¢([0 : 1]) = 0, s0 V([0 :1]) = V([1:0]) = ¢f > 0
captures modular information invisible to L(f,1).

10.2 Relation to Manin—Marcolli

Manin and Marcolli [5] studied modular symbols averaged over CF trajectories using the Gauss
measure dug = 10221”_%, obtaining integrals related to L-values. Our setup replaces the Gauss
measure by the Geom(1/2) measure. The rationality of ¢; is notable: for a generic measure
von [0,1], [{0,2}" dv(z) would be transcendental. Rationality holds because the Geom(1/2)

weights > (mod N) 277 are rational for every residue class.




10.3 Two orthogonal routes to modularity

Feynman integrals Spanning tree cy
What varies Integrand ¥? Domain (0 — t/u)
What is fixed Simplex o Modular form f(z)dz
Detects a, via  Point counts on X¢ Manin symbols (¢, d)
For SP graphs Trivial (Tate motive) Rich (full cusp structure)
Rationality Rare (special graphs) Always (c¢; € Q)

11 Spectral Analysis for Prime Level

For prime N = p, the structure of the transition operator P admits a clean Fourier-analytic
description that illuminates the positivity question.

11.1 Closed form for the weight DFT

On F,, the transition matrix decomposes as P = S o ¢(T'), where T : j — j + 1 is translation,
S :j +— j!is inversion, and ‘gp(T) = Zf;(l) w,T" is the weighted shift polynomial. In the
additive DFT basis xq(j) = ¢% (¢ = €*™/?), the translation operator T acts diagonally with
eigenvalue (% on xg.

Proposition 11.1 (Closed form). The DFT of the weight vector is

p_l Ca
%:;wrgMZQ_Ca, a=0,1,...,p—1, (8)

with o = 1. In particular, |pg|? = 1/(5 — 4 cos(2ma/p)).

Corollary 11.2 (Spectral gap). The spectral radius of P on the Steinberg representation sat-

isfies
1 1

2—¢l /5 —4cos(2n/p)
For large p, this gives p < 1 — 4m? /p? + O(1/p?).

p(Plst) < rggg!%l =

11.2 Perturbation from uniform weights

To understand why G < 0, consider the one-parameter family w,(t) = t"(1 —t)/(1 — t?) for
t € (0,1), with t = 1 giving the uniform chain (w, = 1/p) and t = 1/2 our case. Let u=1—1
and expand G(u) around the uniform chain v = 0.

Proposition 11.3 (Vanishing of linear term). G(u) = agu® 4 azu® 4 - -- with ag = a; = 0.

Proof. At uw = 0: Qunit = (1/p)J on Fy, so (I — Q) ' =TIT+Jand G = 17(I + I =
(I+(p—1))-0=0since > in, = 0.

For the first derivative: dG/dulo = —(p — 1) Zz;i kE([1: k]). By the complex conjugation
symmetry (k) = (p — k) of the +-part, > kiy(k) = > (p — k)¢(k), forcing 2> ky(k) =
p2_ (k) =0. O

The sign of ay distinguishes the two cases:

s sign(as) Consequence

Rank 0 (e=+4+1) >0 a3 <0 G perturbatively negative
Rank 1 (e=—-1) <0 a2>0 G perturbatively positive

10



For rank-0 curves, G(u) < 0 throughout u € (0,1/2]: the perturbation from uniform never
reverses sign. For rank-1 curves, G(u) > 0 for small u, then crosses zero before u = 1/2 and
becomes negative. Positivity of ¢y at ¢ = 1/2 is thus a global phenomenon that cannot be
proved by Taylor expansion around the uniform chain.

11.3 Twisted L-values and the Birch formula

By the Birch formula, the multiplicative Fourier transform of ¢|F; encodes twisted L-values:
for any Dirichlet character x of conductor p,

p—1
S aky itk = - AL, 9)
k=1

11.4 Requirements for a general proof

The preceding analysis identifies three concrete steps toward proving ¢y > 0 universally:
1. Spectral gap (proved): p(P|s;) < 1/|2 — (] (Corollary 11.2).
2. Rank-0 case (likely provable): Requires so > 0, addressed in §12.

3. Rank-1 case (non-perturbative): Since az > 0, positivity requires a global argument.

12 The Second Moment and Polynomial Positivity

This section establishes that sa > 0 for all rank-0 curves at prime level, completing the pertur-
bative ingredient for the rank-0 positivity conjecture.
12.1 Notation and setup

Fix a prime p and let f be the weight-2 newform of a rank-0 elliptic curve E/Q of conductor p.
Define:

¢ Birch modular symbols: birch(r) = {0 — r/p};[ for1 <r<p-1,
e Loop symbols: ¢(r) = {r/p — c>o};cr = L/Q + birch(r),
¢ Moments: s;, = Zf;i kb (r),

where L/Q = L(f,1)/Q" > 0 for rank 0. The function 9 (r) coincides with the Manin symbol
P ([1 : 7]) of the Markov chain framework (§3.2).
12.2 Three foundational identities

Lemma 12.1 (Cuspidality). {0 — 1};{ =0.

Proof. Since ((1) %) € I'p(p) maps oo to 14 0o = oo, the cusp 1 equals oo in T'o(p)\H*. The path
from 0 to 1 is a closed loop on Xy(p); since f is cuspidal, the integral vanishes. By telescoping,
this gives Zf;% birch(r) = —(p—1) - L/ O

Lemma 12.2 (Palindrome). birch(r) = birch(p — ) for all 1 <r <p—1.

Proof. The involution z — —Z on H, combined with (Bl (1)), sends the geodesic from 0 to r/p
to that from 0 to (p — r)/p. This commutes with the T-projection. O

Lemma 12.3 (Sum identity). S"?~| birch(r) = —(p — 1) - L/Q.

11



12.3 Moment identities
Proposition 12.4 (Zeroth moment). sp := Zf;} (r)=0.

Proof. Since ¢(r) = L/ + birch(r), we have Zf,;} (r) = (p—1)- L/ + > birch(r) =
(p=1)-L/Q=(p—-1)-L/Q=0. O

Proposition 12.5 (First moment). s; := Zf;i r-(r)=0.

Proof. By the palindrome, Y r - birch(r) = > (p — r) - birch(r), forcing 2> 7 - birch(r) =
pY_ birch(r) = —p(p — 1)L/Q. Thus ) r - birch(r) = —p(p — 1)L/(22). Then s; = L/ - p(p —
1)/24 > r - birch(r) = 0. O

Remark 12.6. The same argument gives the vanishing of all odd centered moments: Zf:(r —
p/2)*™ e (r) = 0 for all m > 0.

12.4 The Atkin—Lehner connection

Proposition 12.7. For rank-0 curves at prime level p, the Atkin—Lehner eigenvalue is e, = —1,
and

O(cy) := {00 — —1/7"}}' = —birch(r).

Proof. The Atkin—Lehner involution W,, = %(2 _01) maps oo — 0 and —1/r — r/p. Since

flw, = epf and g, = (—1)o4=1L/3) = —1 for rank 0, we get {00 — —1/r}T = ¢, - {0 —
r/p}T = —birch(r). O

12.5 The polynomial factorization

Define the generating function

Lemma 12.8 (Boundary values of H).
(i) H(0) =0,
(i) H(1) =0  (since so =0),
(iii) H'(1) =0  (since s1 =0),
(iv) H"(1) = s9 — 51 = s9.
Proposition 12.9 (Factorization). There exists a polynomial P(x) of degree p — 4 such that
H(z)=z-(1—x)* P(z). (10)

Proof. H(0) = 0 gives = | H(x). H(1) = H'(1) = 0 gives (1 —x)? | H(z). Since ged(z, (1 —
x)?) = 1, their product z(1 — x)? divides H(z), yielding P(z) = H(z)/(z(1 — x)?) of degree
(p—1)—-3=p—4. O

Corollary 12.10. If P has all non-negative coefficients, then H(x) > 0 on [0,1], forcing
s9 = H"(1) > 0. Moreover, s = 2P(1) and sy > 0 whenever P(1) > 0.

Proof. x = 1 is a double zero of H with H(x) > 0 nearby (since z(1 — x)?P(x) > 0 on [0, 1]
when P > 0), so H"(1) > 0. Differentiating H(z) = x(1 — 2)?P(x) twice and evaluating at
z=1: H'(1)=1-0-P"(1) + lower terms = 2P(1). O

12



12.6 Non-negativity of P: computational theorem

Theorem 12.11 (P > 0). For all 11 rank-0 optimal elliptic curves of prime conductor p < 200,
the polynomial P(z) = H(x)/(z(1 — x)?) has all non-negative coefficients.

The coeflicients are computed in exact rational arithmetic via iterated polynomial division.

The explicit formula is:
p—k—3

P%F=§:j'wj+k+%- (11)

J=1

Curve p L/Q S9 P >0 Palindromic

11al 11 1/5 28
17al 17 1/4 118
19al 19 1/3 182
37bl 37 2/3 2372
67al 67 1 15784
73al 73 1/2 9188
89bl 89 1/2 13580
109a1 109 1 48978
113a1 113 1/2 30612
139a1 139 1 87496
179a1 179 1 154154

NN N N N N NN
NN N N N N NENENEN

12.7 Structural properties of P
Proposition 12.12 (Palindrome). P(z) = 2P~*P(1/x), i.e., P[k] = P[p — 4 — k.

Proof. The palindrome ¥ (r) = (p — r) gives H(z) = zPH(1/x). Substituting into H =
2(1 — 2)?P yields x(1 — 2)?P(z) = 2P - (1/2)(1 — 1/2)?P(1/z) = 2P73(1 — x)2P(1/z), whence
P(z) = 2P~4P(1/z). O

Proposition 12.13 (Boundary values).
(i) P[0)=0 (since (1) =0, equivalently birch(1) = —L/Q),
(i) P[1] =v(2) = (3 —az)-L/2>0 (by the Hasse bound |az| < 2v/2 < 3),

(iii) P[p—4] =0, Plp—>5] = P[1] >0 (by palindrome).

12.8 The Cesaro condition

Proposition 12.14 (Equivalence). Define the partial sums A(m) = > """, ¥ (r) and the double
cumulative sums B(K) = 25:1 A(m). Then:

Plk] >0 forallk <= B(K)>0 foral K=1,...,p—3.

Proof. The formula P[k] = — fn_jk 42 A(m) combined with an_zll A(m) =0 (from sp = 0 and
51 = 0) gives P[k] = S K A(m) = B(k +1). O

Proposition 12.15 (Structural properties of A and B).
(i) A(m) = —A(p — 1 —m) (anti-palindromic),

(ii) A((p—1)/2) =0,

13



(iii) B(K) = B(p—2— K) (symmetric),
(i) B(1) = A(1) = (1) =0,
(0) B2) = 9(2) = (3—a2) - L/ > 0.

Proof. Anti-palindrome: A(m) = S>™  4(r) and A(p—1—m) = SP_ 1™ 4(r) = — Zf;;fm p(r)
(using Zf;i (r) = 0). By the palindrome ¢ (r) = ¢)(p—r), the latter sum equals — Y /" | (r) =
—A(m). Setting m = (p — 1)/2 gives A(h) = —A(h), so A(h) =0.

Symmetry of B: from P[k] = B(k + 1) and the palindrome P[k] = P[p — 4 — k], we get
B(k+1)=B(p—3—k),ie, B(K)=B(p—2-K). O

Verified for all 11 curves: ming B(K) = 0, always achieved at K = 1. The function B
rises from B(1) = 0 to a maximum near K = (p — 1)/2, then descends symmetrically back to
B(p—3)=0.

12.9 Toward an analytic proof

The coefficient positivity P[k] = B(k + 1) > 0 holds computationally. Three routes toward a
complete proof:

(a) Rankin—Selberg. Express s = 2P(1) in terms of L(Sym?f,s). The relation sy =
S k% (k) can be written via the Birch formula (9) as a positive-definite form in twisted L-
values L(f, x,1).

(b) Equidistribution. As p — oo, the ratio p = | r?birch(r)|/(L/Q - 3. r?) converges
to approximately 0.88, suggesting a limiting distribution of ¢ values that makes the Cesaro
condition automatic.

(c) Continued fraction control. |birch(r)/(L/Q)| grows with the continued fraction length
of r/p, which is O(log p). For small r, the CF length is O(1), so |¢(r) — L/ is bounded. The
triangular kernel in B(K) gives maximum weight to small r, keeping B(K) > 0.

Conjecture 12.16. For every rank-0 newform f of prime level p, the polynomial P(xz) =
H(x)/(z(1 — z)?) has all non-negative coefficients.

12.10 Example: 11al

For 11al (p =11, L/Q =1/5):

¢ values: (1) = 0, ¥(2) = 1, (3)
»(8) =3, ¥(9) =1, ¥(10) = 0.

%7 1/}(4) = _%7 ¢(5) =-1 ¢(6) = -1, ¢(7) = _%7

H(z) =2+ 32 — 12t —2° — 20 — 12T+ L2% 4+ 2% = 2(1 —2)* (v + 2% + Z2° + I2" + 32° +20).

P(z) =z + 32 + L2° + Lot + 32° 4 25, all coefficients > 0. v/
sy =2P(1) = 2- 14 = 28. (As integer moment: > r2y(r) = 28.)

13 Open Questions

Question 13.1. Is ¢y > 0 for all weight-2 newforms f? The rank-0 case reduces (by §11 and §12)
to showing B(K) > 0 (Conjecture 12.16), verified for all prime levels p < 200. The rank-1 case
remains non-perturbative.

Question 13.2. Can Conjecture 12.16 be proved analytically? An analytic proof would proceed
via (a) Rankin—Selberg integrals, (b) equidistribution of Hecke eigenvalues, or (c¢) continued
fraction length control on birch(r).
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Question 13.3. Is the Steinberg polynomial always irreducible of degree p with Galois group
Sp? (Verified for p < 53.)

Question 13.4. Is there a formula for A¢/L(f,1) in terms of standard arithmetic invariants?
Question 13.5. Is p(Plst) < 1/+/3 for all primes p? Computationally p ~ 0.60 for all p < 100.

Question 13.6. Does the polynomial positivity (Theorem 12.11) extend to composite levels?
The factorization H = x(1 — x)2P uses only sp = 0 and s; = 0.

Question 13.7. Is Ay a “non-commutative L-value” in the sense of Manin-Marcolli [5]7

Question 13.8. Can Ay be extended to higher-weight modular forms?
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A Computed Values

Table 1: Values of ¢y for optimal curves, conductor < 50.

Curve N cy rank | Fiops|
1la 11 7/20 0 5
4a 14 1/3 0 6
15a 15 17/40 0 8
17a 17 3/8 0 4
19a 19 31/60 0 3
20a, 20 5/16 0 6
2la 21 17/48 0 8
242 24 9/20 0 8
26a 26 16/33 0 3
26b 26 20/77 0 7
97a 27 1/2 0 3
30a 30 47/174 0 6
32a 32 7/18 0 4
33a 33 215/272 0 4
34a, 34  83/153 0 6
35a 35  112/249 0 3
36a 36 1/4 0 6
37a 37 31/209 1 1
37b 37 548/627 0 3
38a 38 19/42 0 3
38b 38 23/70 0 5
39a 39 23/32 0 4
40a 40 13/18 0 4
42a, 42 85/196 0 8
43a 43 109/1540 1 1
44a, 44 17/36 0 3
45a 45 71/95 0 2
46a 46 13/22 0 2
A8a 48 85/114 0 4
49a 49 9/14 0 2
50a 50 58/149 0 3
50b 50  228/745 0 5
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Table 2: Values of ¢y for optimal curves, conductor 51-100.

Curve N cr rank | Fiops|
5la 51 347/816 0

52a 52 27/40

53a 53 23/234

54a 54 4/9

54b 54 14/27

55a 55 1217/1836

56a 56 47/146

56b 96 207/292
57a 57 133/1952
57b 57 691/976
57c o7 5141/9760
o8a 58 166,/1479
58b 98 4226/7395
6la 61 29/372
62a 62 1037,/2860
63a 63 251/369

64a 64 25/41
65a 65 977/5684
66a 66 143/348
66b 66 43/58

66¢ 66 271/174
67a 67  35697/26248

69a 69 119/176
70a 70 1585/2208
72a 72 31/46

73a 73 1655/2664
75a 75 2213/1529
75b 75 52187645
75¢ 75 1939/7645
T6a 76 229/185
T7a 77T 1192/6699
7Th 7T 3349/4466
T7c 77 51437656
78a 78 67271/96102
79a 79 247/1816
80a 80  1304/2003
80b 80  2529/4006
82a 82  622/3255
83a 83  33479/310828
84a 84  695/1068

84b 84 23/36
85a 85  56023,/42228
88a 88 9/52

89a 89 1729/24870
89b 89 6521/9948
90a 90  24995/58008
90b 90  80927/174024
90c 90  80411/58008
91a 91  8979/138514
91b 91  40069/415542
92a 92 1565/3796
92b 92 293/1898
94a 94 5651/8550
96a 96 6919/11073
96b 96 7244/11073
98a 98 2043/1729
99a 99 4834/23451
99b 99 4690/ 7817
99c 99 9522/7817
99d 99  21651/15634
100a, 100 834/641

OO OO OO0 OHHOFHRFOOOOHRHFOOOHFPF OO, OOOHROOODODODOODODODOLOODODODOOoOHroOoOoOoOHrOrHRrROOrHrOoOOoOOoOOoOoOoO—ROo
l\D)—‘Mﬂkwwﬂkﬂkl\?b—‘C»JC»J)—‘»&@@Mb—l>—‘l\?l\DGﬁbﬁl\')M%l—‘l\Dl\DC»J)—‘)—‘U\[\D»—*M%%MHE%GB[\D%M%)—‘U\»—‘U‘%H[\D%%MO&!—‘[\DO&



Table 3: Alien primes for selected conductors.

N Alien primes

N Alien primes

11—
13 7

17 —

19 5

2% 7,11
30 29

33 17

37 11,19
43 5,7, 11
50 149

56 73

57 5,61

67 17,193
75 11,139
80 2003

89 5,829
90 29, 2417
91 69257
95 197203
99 17, 7817

Table 4: Steinberg polynomial data for prime N = p < 53.

P 2r —1 A, (factored)  Alien primes
5 31 23.3 —

7 127 28 —
11 23 -89 29.3 —
13 8191 210.3.7 7
17 131071 213 .33 —
19 524287 215.3.5 5
23 47 - 178481 218.32.5 5
29 233 - 1103 - 2089 220.34.5 5
31 2147483647 227 . 32 —
37 223 - 616318177 226.33.11-19 11, 19
41 13367 - 164511353 228 . 34. 72 7
43 431-9719-2099863  231.33.5.7-11 5,7, 11
47 2351 -4513 - 13264529 235 . 38 —
53 6361 - 69431 - 20394401 238 .38.13 13
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