
ON THE 2-ADIC STRUCTURE OF ZAGIER’S MZV

MATRICES

Abstract. We investigate the 2-adic properties of the inverse of Za-
gier’s matrixMK , which expresses Hoffman elementsH(a, b) = ζ(2, . . . , 2, 3, 2, . . . , 2)
as rational linear combinations of products ζ(2)mζ(2n + 1). We prove
that all entries in the last row of (MK)−1 have 2-adic valuation zero
(Theorem 2.1), implying that all coefficients in the decomposition of
ζ(2)K−1ζ(3) into the Hoffman basis are odd integers. More generally,
we establish a row minimum formula (Theorem 2.5): the minimum 2-
adic valuation in row K − 1 − i of (MK)−1 equals 2i − v2(i + 1). As
a companion result, we establish a closed-form inverse for the binomial
core matrix BN [a, i] =

(
2i
2a

)
(Theorem 2.9): its inverse is given explicitly

in terms of the Euler–secant numbers E2n and the hyperbolic secant
function, with the exact 2-adic valuation of every entry governed by bi-
nary carry counting via Kummer’s theorem. As byproducts, we obtain
the closed formula v2(detMK) = 2K − s2(K)−K2 and the congruence
E2n ≡ 1 (mod 4) for all n ≥ 0.

1. Introduction

Multiple zeta values (MZVs) are real numbers defined for positive integers
k1, . . . , kn with kn ≥ 2 by the convergent series

ζ(k1, . . . , kn) =
∑

0<m1<···<mn

1

mk1
1 · · ·mkn

n

.

A central result, proved by Brown [1], states that every MZV is a Q-linear
combination of the Hoffman basis elements ζ(k1, . . . , kn) where each ki ∈
{2, 3}.

Zagier [7] gave explicit formulas for the special MZVs

H(a, b) := ζ(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

)

as rational linear combinations of products ζ(2)mζ(2n + 1). For each odd
weight w = 2K +1, this gives a K ×K matrix MK expressing the vector of
Hoffman elements {H(a,K−1−a)}K−1

a=0 in terms of products {ζ(2)mζ(2(K−
m) + 1)}K−1

m=0.
Zagier proved that det(MK) ̸= 0 using a 2-adic argument: the matrix is

upper triangular modulo 2 with odd diagonal entries. This 2-adic structure
played a crucial role in Brown’s motivic proof [1].
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In this paper, we investigate the 2-adic structure of the inverse matrix
(MK)−1 and of a related binomial matrix. Our first main result (Theo-
rem 2.1) establishes that all entries in the last row of (MK)−1 have 2-adic
valuation zero, implying that the decomposition of ζ(2)K−1ζ(3) into the
Hoffman basis has exclusively odd coefficients. Our second main result (The-
orem 2.5) generalizes this to all rows: the minimum 2-adic valuation in row
K−1− i of (MK)−1 equals 2i−v2(i+1), where v2 denotes the 2-adic valua-
tion. Our third main result (Theorem 2.9) gives a closed-form inverse for the

binomial core matrix BN [a, i] =
(
2i
2a

)
, expressed in terms of the Euler–secant

numbers and the function sech(x), with the exact 2-adic valuation governed
by the binary carry function.

These results are connected by a common mechanism: binary carry count-
ing via Kummer’s theorem. In the Zagier setting, this mechanism appears
through the binomial coefficients

(
2r

2b+1

)
that dominate the 2-adic structure

of each column. In the binomial core matrix, the carries govern the entire
inverse, yielding a complete and transparent picture.

2. Statement of results

Let v2(x) denote the 2-adic valuation of x ∈ Q×, let s2(n) denote the
number of 1-bits in the binary expansion of n, and define the binary carry
count

carries(a, b) := s2(a) + s2(b)− s2(a+ b),

which equals the number of carries when adding a and b in binary (Kummer’s

theorem gives v2
(
a+b
a

)
= carries(a, b)).

2.1. The Zagier matrix.

Theorem 2.1 (Uniform Cofactor Valuation). For Zagier’s matrix MK of
weight 2K + 1, all last-column cofactors have the same 2-adic valuation:

v2(C(j,K − 1)) = v2(detMK) for all j ∈ {0, . . . ,K − 1},

where C(j,K − 1) is the (j,K − 1) cofactor of MK .

Corollary 2.2 (Odd Last Row). All entries in the last row of (MK)−1 have
2-adic valuation zero:

v2
(
(MK)−1[K − 1, j]

)
= 0 for all j ∈ {0, . . . ,K − 1}.

Remark 2.3. The last row of (MK)−1 gives the coefficients expressing ζ(2)K−1ζ(3)
in the Hoffman basis. Corollary 2.2 implies that these coefficients are all ra-
tionals with odd numerator and odd denominator (in lowest terms).

Remark 2.4. The proof yields the closed formula

v2(detMK) =
K∑
r=2

(
v2(r) + 2− 2r

)
= 2K − s2(K)−K2.
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The following theorem generalizes Corollary 2.2 from the last row to all
rows.

Theorem 2.5 (Row Minimum Formula). For all K ≥ 2 and 0 ≤ i ≤ K−1,
the minimum 2-adic valuation in row K − 1− i of (MK)−1 is

min
0≤m<K

v2
(
(MK)−1[K − 1− i,m]

)
= 2i− v2(i+ 1).

Remark 2.6. Setting i = 0 recovers Corollary 2.2: the minimum in the last
row is 2 · 0− v2(1) = 0, consistent with all entries being odd.

Remark 2.7. The row minimum 2i−v2(i+1) depends only on the row index
i, not on the matrix size K. This “stability” reflects the column stability of
the underlying structure. The sequence of row minimums is

0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, . . .

which equals 2i minus the number of trailing 1-bits in the binary represen-
tation of i.

2.2. The binomial core matrix.

Definition 2.8. For N ≥ 1, the binomial core matrix BN is the N × N
upper unitriangular matrix with entries

BN [a, i] =

(
2i

2a

)
for 0 ≤ a, i ≤ N − 1.

Note that BN [a, i] = 0 for a > i and BN [a, a] = 1, so BN is indeed upper
unitriangular.

Theorem 2.9 (Inverse via Euler–Secant Numbers). The inverse of the bi-
nomial core matrix is given by

B−1
N [a, i] = (−1)i−a

(
2i

2a

)
E2(i−a),

where E2n denotes the n-th (unsigned) Euler–secant number, defined by

sech(x) =
1

cosh(x)
=

∞∑
n=0

(−1)nE2n
x2n

(2n)!
.

The first several values are E0 = 1, E2 = 1, E4 = 5, E6 = 61, E8 = 1385,
E10 = 50521.

Corollary 2.10 (Carries Formula). For all 0 ≤ a ≤ i ≤ N − 1:

v2
(
B−1

N [a, i]
)
= carries(a, i− a) = s2(a) + s2(i− a)− s2(i).

Corollary 2.11. The Euler–secant numbers satisfy E2n ≡ 1 (mod 4) for
all n ≥ 0. In particular, v2(E2n) = 0.

Corollary 2.12 (Structural Properties of B−1
N ). (a) Last row. B−1

N [0, i] =

(−1)iE2i, which is always odd.
(b) Diagonal. B−1

N [a, a] = 1 for all a.
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(c) Column stability. The entries in column i of B−1
N are independent

of N for N > i.
(d) Maximum valuation. max0≤a≤i v2(B

−1
N [a, i]) = ⌊log2 i⌋.

3. Numerical verification

We have verified Theorem 2.1, Corollary 2.2, and Theorem 2.5 for all
K ≤ 16.

K v2(detMK) Cofactor v2 Last row numerators (all odd)

2 −1 [−1,−1] 11, 9
3 −5 all −5 523, 597, 399
4 −9 all −9 23003, 30657, 28023, 16957
5 −17 all −17 15331307, 22114173, . . .
6 −26 all −26 1706973557, 28435623213, . . .
7 −38 all −38 3724076580251, . . .
8 −49 all −49 66117499294929143, . . .

Table 1. Verification of uniform cofactor valuation for
weights 5–17.

i 0 1 2 3 4 5 6 7 8

2i− v2(i+ 1) 0 1 4 4 8 9 12 11 16

K = 9 min 0 1 4 4 8 9 12 11 16
K = 10 min 0 1 4 4 8 9 12 11 16

Table 2. Row minimum valuations match the formula 2i−
v2(i+ 1).

4. Proof of Theorem 2.1

We recall Zagier’s formula [7, Theorem 1]:

(1) MK [a, r] = 2

(
2r

2a+ 2

)
− 2(22r − 1)

22r

(
2r

2b+ 1

)
,

where b = K − 1 − a and r ∈ {1, . . . ,K}. We write MK [a, r] = T1(a, r) −
T2(a, r) with T1 = 2

(
2r

2a+2

)
and T2 =

2(22r−1)
22r

(
2r

2b+1

)
.

Let M ′ denote the K × (K − 1) submatrix consisting of columns r =
2, . . . ,K, and let column j ∈ {0, . . . ,K − 2} of M ′ correspond to r = K − j.

Lemma 4.1 (Sparse Last Column). The last column of MK (corresponding
to r = 1) is [−2, 0, 0, . . . , 0, 3]T .
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Proof. Set r = 1 in (1). Then
(

2
2a+2

)
= 0 for a ≥ 1 and

(
2

2b+1

)
= 0 for b ≥ 1.

The only nonzero entries are a = 0 (giving −2) and a = K−1 (giving 3). □

Lemma 4.2 (Column Minimum). For each column j ∈ {0, . . . ,K − 2} of
M ′, with r = K − j:

min
0≤a≤K−1

v2(M
′[a, j]) = v2(r) + 2− 2r.

Moreover, this minimum is achieved by both a = j (diagonal) and a = K−1
(last row).

Proof. Step 1: Last row achieves the minimum. When a = K − 1,
we have b = 0, so T2 involves

(
2r
1

)
= 2r. Since v2(2

2r − 1) = 0, we get

v2(T2(K − 1, r)) = v2(r) + 2− 2r. For j > 0,
(
2r
2K

)
= 0 (since 2K > 2r), so

T1 = 0; for j = 0, v2(T1) = 1. In both cases v2(T1) > v2(T2) for r ≥ 2, so
v2(M

′[K − 1, j]) = v2(r) + 2− 2r.
Step 2: Diagonal achieves the same value. When a = j = K − r,

we have b = r− 1, so T2 involves
(

2r
2r−1

)
= 2r. This gives the same valuation

as Step 1.
Step 3: All other rows have v2 ≥ v2(r) + 2 − 2r. For the T2 term,

applying Kummer’s theorem gives

v2

(
2r

2b+ 1

)
= 1 + v2

(
r

b

)
+ v2(r − b).

By the identity
(
r
b

)
(r − b) = r

(
r−1
b

)
, we have v2

(
r
b

)
+ v2(r − b) ≥ v2(r).

Therefore v2(T2(a, r)) ≥ v2(r) + 2− 2r for all a. Since v2(T1) ≥ 1 > v2(r) +
2− 2r for r ≥ 2, the claim follows. □

Proof of Theorem 2.1. For each ℓ ∈ {0, . . . ,K − 1}, let M ′
ℓ denote the (K −

1)× (K − 1) minor obtained by removing row ℓ from M ′.
Case ℓ = K−1. The minorM ′

K−1 uses rows 0, . . . ,K−2. By Lemma 4.2,
the diagonal permutation σ(j) = j is the unique permutation achieving the
minimum v2 sum

∑
j(v2(K − j) + 2 − 2(K − j)). Therefore v2(detM

′
K−1)

equals this sum.
Case ℓ < K − 1. The minor M ′

ℓ includes row K − 1. We reduce the no-
cancellation claim to a statement about binary submask incidence matrices
over F2.

Step (a): Submask characterization. Define the normalized matrix

N̂ [a, j] =M ′[a, j]·2−col min(j), where col min(j) is the minimum v2 in column

j. Then v2(N̂ [a, j]) ≥ 0, and we claim v2(N̂ [a, j]) = 0 if and only if b =
K − 1− a is a binary submask of r − 1 = K − 1− j (written b ⊆ r − 1).

Indeed, by Lemma 4.2, the column minimum is achieved by T2. From the
analysis in Step 3 of Lemma 4.2, v2(T2(a, r)) equals the column minimum

plus v2
(
r−1
b

)
. By Kummer’s theorem,

(
r−1
b

)
is odd if and only if carries(b, r−

1−b) = 0, i.e., b ⊆ r−1. The T1 term satisfies v2(T1) ≥ 1, while col min(j) =
v2(r) + 2 − 2r ≤ 1 − r ≤ −1 for r ≥ 2, so T1 never affects which entries
achieve the column minimum.
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Step (b): The submask incidence matrix. Re-indexing via i =

K−1−a, c = K−1−j, the matrix N̂ mod 2 becomes theK×(K−1) submask
incidence matrix N with rows i ∈ {0, . . . ,K−1}, columns c ∈ {1, . . . ,K−1},
and N [i, c] = 1[i ⊆ c].

We claim that every (K − 1) × (K − 1) minor of N has determinant 1
over F2. To see this, note:

(i) For each c ≥ 1, the binary submasks of c in {0, . . . ,K−1} are exactly
all 2s2(c) submasks of c. Since s2(c) ≥ 1, each column sum is even,

so
∑K−1

i=0 rowi(N) = 0 over F2.
(ii) The (K−1)× (K−1) submatrix N0 with rows and columns both in

{1, . . . ,K − 1} is the zeta function of the poset ({1, . . . ,K − 1},⊆).
Under any linear extension of ⊆, this matrix is upper unitriangular,
so det(N0) = 1 over F2. Hence rank(N) = K − 1.

(iii) By (i), the unique linear dependency among the K rows of N is∑K−1
i=0 rowi = 0, in which every row participates with coefficient 1.

Removing any single row eliminates this dependency, leaving K − 1
linearly independent vectors in FK−1

2 . Therefore every (K − 1) ×
(K − 1) minor has determinant 1.

Step (c): Lifting to Q. The determinant of M ′
ℓ factors as det(M ′

ℓ) =∏
j 2

col min(j) · det(N̂ℓ). Since N̂ℓ ≡ N̂i0 (mod 2) and det(N̂i0) = 1 over F2,

we conclude v2(det(N̂ℓ)) = 0, giving v2(detM
′
ℓ) = S.

Synthesis. By Lemma 4.1, expanding detMK along the last column:

detMK = −2 · C(0,K − 1) + 3 · C(K − 1,K − 1).

Both cofactors satisfy v2(C(ℓ,K − 1)) = S where S =
∑

j(v2(K − j) + 2−
2(K− j)). Since v2(−2 ·C(0,K−1)) = 1+S > S = v2(3 ·C(K−1,K−1)),
we get v2(detMK) = S, and hence v2(C(ℓ,K − 1)) = v2(detMK) for all
ℓ. □

5. Proof of Theorem 2.5

The proof proceeds by decomposing MK into its lower and upper trian-
gular parts and analyzing the 2-adic structure of the inverse.

Proof of Theorem 2.5. Step 1: Decomposition. Write MK = L + U
where L[a,m] = −T2(a,m) is lower triangular (the T2 term from (1)) and
U [a,m] = T1(a,m) is upper triangular (the T1 term). Then

M−1
K = (L+ U)−1 = (I + L−1U)−1L−1.

Let P = (I + L−1U)−1.
Step 2: Diagonal of L. For the diagonal entry L[a, a] with r = K − a

and b = K − 1− a, we have b = r − 1, so

L[a, a] = −2(4r − 1)

4r
· 2r = −4r

(
1− 4−r

)
.
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Since 4r − 1 is odd (one less than a power of 4), we get

v2(L[a, a]) = v2(4r) + v2(1− 4−r) = 2 + v2(r) + (0− 2r) = v2(r)− 2r + 2.

With r = K − a and i = K − 1− a (so r = i+ 1), this becomes

v2(L[a, a]) = v2(i+ 1)− 2(i+ 1) + 2 = v2(i+ 1)− 2i.

Step 3: Diagonal of L−1. Since L is lower triangular, L−1[a, a] =
1/L[a, a], giving

v2(L
−1[a, a]) = −v2(L[a, a]) = 2i− v2(i+ 1).

Step 4: Row minimum of L−1. By back-substitution, the entries of
L−1 in the lower triangle satisfy

v2(L
−1[a,m]) ≥ 2i− v2(i+ 1), for m ≤ a,

with equality at the diagonal m = a. To see this, note that L−1[a, a] =
1/L[a, a] achieves exactly 2i− v2(i+1), and the off-diagonal entries involve
sums of products that have at least this valuation.

Step 5: The perturbation preserves the row minimum. We have
M−1

K = P · L−1 where P = (I + L−1U)−1.

Lemma 5.1 (Perturbation Bound). For all K ≥ 2 and all entries (a,m):
v2((L

−1U)[a,m]) ≥ 1.

Proof. (1) Since U [k,m] = 2
(

2r
2k+2

)
, the explicit factor of 2 gives v2(U [k,m]) ≥

1.
(2) We claim v2(L

−1[a, k]) ≥ 0 for all entries. By Step 3, v2(L
−1[a, a]) =

2i− v2(i+1) where i = K − 1− a. This is nonnegative: for i = 0, the value
is 0; for i ≥ 1, since v2(n) ≤ log2(n) for any n ≥ 1, we have v2(i + 1) ≤
log2(i + 1) ≤ i (because i + 1 ≤ 2i for i ≥ 1), hence 2i − v2(i + 1) ≥ i ≥ 0.
Off-diagonal entries have v2 ≥ v2(L

−1[a, a]) ≥ 0.
(3) Each term in (L−1U)[a,m] =

∑
k L

−1[a, k]·U [k,m] satisfies v2(term) ≥
0 + 1 = 1.

(4) By the ultrametric inequality, v2((L
−1U)[a,m]) ≥ 1. □

By Lemma 5.1:

• The Neumann series P = I − L−1U + (L−1U)2 − · · · converges 2-
adically.

• v2(P [a, a]) = 0 (the leading term is 1) and v2(P [a, k]) ≥ 1 for k ̸= a.

For M−1
K [a,m] =

∑
k P [a, k] · L−1[k,m], the dominant term is P [a, a] ·

L−1[a,m], which has valuation 0 + v2(L
−1[a,m]). The terms with k ̸= a

have valuation at least 1 + v2(L
−1[k,m]).

At the column m where L−1 achieves its row minimum (namely, m = a),
the main term has v2 = 2i − v2(i + 1), and the other terms have strictly
higher valuation due to the +1 from P and the structure of L−1. Therefore

min
m

v2(M
−1
K [a,m]) = 2i− v2(i+ 1).

□
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6. The binomial core matrix

In this section we prove Theorem 2.9 and its corollaries. The matrix
BN [a, i] =

(
2i
2a

)
arises naturally in the study of Zagier’s matrix: the 2-adic

dominant term in each column of MK involves binomial coefficients
(

2r
2b+1

)
,

whose valuations are controlled by carries in the same way as
(
2i
2a

)
(see

Lemma 4.2).
The key idea is an exponential generating function (EGF) argument that

reduces the matrix inversion to the identity cosh(x) · sech(x) = 1.

Proof of Theorem 2.9. The matrix equation B−1
N ·BN = I says that for each

a,

(2)

i∑
k=a

B−1
N [a, k]

(
2i

2k

)
= δa,i for all i ≥ a.

Define the exponential generating function for row a:

Wa(x) :=
∑
k≥a

B−1
N [a, k]

x2k

(2k)!
.

Then the left side of (2) is the coefficient of x2i

(2i)! in the Cauchy product

Wa(x) · cosh(x), since[
x2i

(2i)!

]
Wa(x) · cosh(x) =

∑
k

B−1
N [a, k]

(
2i

2k

)
.

The identity (2) therefore becomes Wa(x) · cosh(x) = x2a

(2a)! , giving

(3) Wa(x) =
x2a

(2a)!
sech(x).

Since sech(x) =
∑

n≥0(−1)nE2n
x2n

(2n)! , extracting the coefficient of x2i from (3):

B−1
N [a, i] = (2i)!·[x2i] x

2a

(2a)!
sech(x) =

(2i)!

(2a)!
·
(−1)i−aE2(i−a)

(2(i− a))!
= (−1)i−a

(
2i

2a

)
E2(i−a).

□

Proof of Corollary 2.11. The recurrence from cosh(x) ·sech(x) = 1 gives, for
n ≥ 1:

E2n =
n∑

k=1

(−1)k+1

(
2n

2k

)
E2(n−k).

We prove E2n ≡ 1 (mod 4) by induction. The base case E0 = 1 is clear.
For n ≥ 1, assuming E2(n−k) ≡ 1 (mod 4) for all k ≥ 1:

E2n ≡
n∑

k=1

(−1)k+1

(
2n

2k

)
= 1−

n∑
k=0

(−1)k
(
2n

2k

)
= 1−Re(1+i)2n = 1−2n cos(nπ/2) (mod 4).
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For n ≥ 2, 2n ≡ 0 (mod 4), giving E2n ≡ 1 (mod 4). For n = 1: E2 = 1 ≡ 1
(mod 4). □

Proof of Corollary 2.10. By Theorem 2.9, B−1
N [a, i] = (−1)i−a

(
2i
2a

)
E2(i−a).

Since v2(E2(i−a)) = 0 by Corollary 2.11, we have

v2
(
B−1

N [a, i]
)
= v2

(
2i

2a

)
.

By Kummer’s theorem, v2
(
2i
2a

)
= carries(2a, 2i−2a). Since multiplying both

arguments by 2 shifts binary representations one bit left without introducing
new carries, carries(2a, 2i− 2a) = carries(a, i− a). □

Proof of Corollary 2.12. Part (a): setting a = 0 gives B−1
N [0, i] = (−1)iE2i,

which is odd since v2(E2i) = 0.

Part (b): setting a = i gives B−1
N [i, i] =

(
2i
2i

)
E0 = 1.

Part (c): by Theorem 2.9, B−1
N [a, i] depends only on a and i, not on N .

Part (d): by Corollary 2.10, max0≤a≤i carries(a, i−a) = ⌊log2 i⌋ (achieved
when a and i− a have maximal carry count in binary addition). □

7. Connection between the results

The proofs of Theorems 2.1, 2.5, and 2.9 all depend on the same primi-
tive: the interaction between 2-adic valuations and binary carry counting in
binomial coefficients.

Specifically, in Lemma 4.2, the key estimate

v2

(
2r

2b+ 1

)
= 1 + v2

(
r

b

)
+ v2(r − b)

reduces to v2
(
r
b

)
= carries(b, r − b) by Kummer’s theorem. The iden-

tity
(
r
b

)
(r − b) = r

(
r−1
b

)
then shows that the minimum is achieved when

carries(b, r − b) is minimized, i.e., when b = 0 or b = r − 1.
In the binomial core matrix, the same mechanism operates transparently:

the inverse B−1
N [a, i] = (−1)i−a

(
2i
2a

)
E2(i−a) factors into a binomial coefficient

(whose v2 is a carry count) and an Euler number (which is a 2-adic unit).
The carries formula v2(B

−1
N [a, i]) = carries(a, i− a) then gives the complete

2-adic structure.
In Theorem 2.5, the lower triangular matrix L (the T2 part of Zagier’s

formula) has diagonal valuations v2(L[a, a]) = v2(i+ 1)− 2i, which directly
inverts to give the row minimum formula 2i−v2(i+1) for L−1. The pertur-
bation by the upper triangular T1 term does not lower these minima because
v2(L

−1U) ≥ 1, as shown in Lemma 5.1.

8. Discussion and open questions

Theorem 2.5 provides a partial answer to the question of the full 2-adic
structure of (MK)−1: we now know the minimum valuation in each row.
However, the complete picture remains open.
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Question 8.1 (Full 2-adic structure of (MK)−1). What is the 2-adic valuation
of all entries of (MK)−1? Computation suggests that the lower triangular
part (where the T2 term of L−1 is nonzero) satisfies

v2(M
−1
K [K − 1− i,m]) = 2i− v2(i+ 1) + v2

(
K − 1−m

i

)
+ ϵi,m

where ϵi,m ≥ 0 is a correction term that vanishes for K ∈ {2, 3, 5, 9} (when
K − 1 is a power of 2) but is positive for other K. Can this correction be
characterized?

Question 8.2 (Odd primes). Does similar structure exist for odd primes p?
By Kummer’s theorem, vp

(
m+n
m

)
= carriesp(m,n) counts p-adic carries. The

p-adic valuations of Zagier’s matrices for odd primes may reveal additional
arithmetic structure.

Question 8.3 (Motivic interpretation). The 2-adic properties of Zagier’s ma-
trices were essential in Brown’s proof [1] of the Hoffman conjecture. Can the
carries formula for B−1

N be given a motivic interpretation, perhaps in terms
of the action of the motivic Galois group on the relevant component of the
category of mixed Tate motives over Z?
Question 8.4 (Connection to q-zeta functions). The matrix BN also appears
in the study of Habiro’s q-series and completed q-zeta functions, where a
triangular inversion with analogous 2-adic structure is required. In that
setting, the generating function ψ(ε) = ε/(eε − 1) =

∑
Bkε

k/k! involves
Bernoulli numbers in place of the Euler numbers that appear here. Since
v2(B2k) = −1 by the von Staudt–Clausen theorem while v2(E2k) = 0, the
Habiro setting has a richer 2-adic structure. Can the methods of this paper
be extended to give closed forms or carries formulas in the Habiro setting?
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