

ON THE 2-ADIC STRUCTURE OF ZAGIER'S MZV MATRICES

ABSTRACT. We investigate the 2-adic properties of the inverse of Zagier's matrix M_K , which expresses Hoffman elements $H(a, b) = \zeta(2, \dots, 2, 3, 2, \dots, 2)$ as rational linear combinations of products $\zeta(2)^m \zeta(2n + 1)$. We prove that all entries in the last row of $(M_K)^{-1}$ have 2-adic valuation zero (Theorem 2.1), implying that all coefficients in the decomposition of $\zeta(2)^{K-1} \zeta(3)$ into the Hoffman basis are odd integers. More generally, we establish a row minimum formula (Theorem 2.5): the minimum 2-adic valuation in row $K - 1 - i$ of $(M_K)^{-1}$ equals $2i - v_2(i + 1)$. As a companion result, we establish a closed-form inverse for the binomial core matrix $B_N[a, i] = \binom{2i}{2a}$ (Theorem 2.9): its inverse is given explicitly in terms of the Euler-secant numbers E_{2n} and the hyperbolic secant function, with the exact 2-adic valuation of every entry governed by binary carry counting via Kummer's theorem. As byproducts, we obtain the closed formula $v_2(\det M_K) = 2K - s_2(K) - K^2$ and the congruence $E_{2n} \equiv 1 \pmod{4}$ for all $n \geq 0$.

1. INTRODUCTION

Multiple zeta values (MZVs) are real numbers defined for positive integers k_1, \dots, k_n with $k_n \geq 2$ by the convergent series

$$\zeta(k_1, \dots, k_n) = \sum_{0 < m_1 < \dots < m_n} \frac{1}{m_1^{k_1} \cdots m_n^{k_n}}.$$

A central result, proved by Brown [1], states that every MZV is a \mathbb{Q} -linear combination of the Hoffman basis elements $\zeta(k_1, \dots, k_n)$ where each $k_i \in \{2, 3\}$.

Zagier [7] gave explicit formulas for the special MZVs

$$H(a, b) := \zeta(\underbrace{2, \dots, 2}_a, 3, \underbrace{2, \dots, 2}_b)$$

as rational linear combinations of products $\zeta(2)^m \zeta(2n + 1)$. For each odd weight $w = 2K + 1$, this gives a $K \times K$ matrix M_K expressing the vector of Hoffman elements $\{H(a, K - 1 - a)\}_{a=0}^{K-1}$ in terms of products $\{\zeta(2)^m \zeta(2(K - m) + 1)\}_{m=0}^{K-1}$.

Zagier proved that $\det(M_K) \neq 0$ using a 2-adic argument: the matrix is upper triangular modulo 2 with odd diagonal entries. This 2-adic structure played a crucial role in Brown's motivic proof [1].

2020 *Mathematics Subject Classification.* Primary 11M32; Secondary 11S80, 05A10.

Key words and phrases. multiple zeta values, Hoffman basis, 2-adic valuation, Zagier matrix, Euler numbers, binary carries.

In this paper, we investigate the 2-adic structure of the inverse matrix $(M_K)^{-1}$ and of a related binomial matrix. Our first main result (Theorem 2.1) establishes that all entries in the last row of $(M_K)^{-1}$ have 2-adic valuation zero, implying that the decomposition of $\zeta(2)^{K-1}\zeta(3)$ into the Hoffman basis has exclusively odd coefficients. Our second main result (Theorem 2.5) generalizes this to all rows: the minimum 2-adic valuation in row $K-1-i$ of $(M_K)^{-1}$ equals $2i - v_2(i+1)$, where v_2 denotes the 2-adic valuation. Our third main result (Theorem 2.9) gives a closed-form inverse for the binomial core matrix $B_N[a, i] = \binom{2i}{2a}$, expressed in terms of the Euler–secant numbers and the function $\text{sech}(x)$, with the exact 2-adic valuation governed by the binary carry function.

These results are connected by a common mechanism: binary carry counting via Kummer's theorem. In the Zagier setting, this mechanism appears through the binomial coefficients $\binom{2r}{2b+1}$ that dominate the 2-adic structure of each column. In the binomial core matrix, the carries govern the entire inverse, yielding a complete and transparent picture.

2. STATEMENT OF RESULTS

Let $v_2(x)$ denote the 2-adic valuation of $x \in \mathbb{Q}^\times$, let $s_2(n)$ denote the number of 1-bits in the binary expansion of n , and define the binary carry count

$$\text{carries}(a, b) := s_2(a) + s_2(b) - s_2(a + b),$$

which equals the number of carries when adding a and b in binary (Kummer's theorem gives $v_2(\binom{a+b}{a}) = \text{carries}(a, b)$).

2.1. The Zagier matrix.

Theorem 2.1 (Uniform Cofactor Valuation). *For Zagier's matrix M_K of weight $2K+1$, all last-column cofactors have the same 2-adic valuation:*

$$v_2(C(j, K-1)) = v_2(\det M_K) \quad \text{for all } j \in \{0, \dots, K-1\},$$

where $C(j, K-1)$ is the $(j, K-1)$ cofactor of M_K .

Corollary 2.2 (Odd Last Row). *All entries in the last row of $(M_K)^{-1}$ have 2-adic valuation zero:*

$$v_2((M_K)^{-1}[K-1, j]) = 0 \quad \text{for all } j \in \{0, \dots, K-1\}.$$

Remark 2.3. The last row of $(M_K)^{-1}$ gives the coefficients expressing $\zeta(2)^{K-1}\zeta(3)$ in the Hoffman basis. Corollary 2.2 implies that these coefficients are all rationals with odd numerator and odd denominator (in lowest terms).

Remark 2.4. The proof yields the closed formula

$$v_2(\det M_K) = \sum_{r=2}^K (v_2(r) + 2 - 2r) = 2K - s_2(K) - K^2.$$

The following theorem generalizes Corollary 2.2 from the last row to all rows.

Theorem 2.5 (Row Minimum Formula). *For all $K \geq 2$ and $0 \leq i \leq K-1$, the minimum 2-adic valuation in row $K-1-i$ of $(M_K)^{-1}$ is*

$$\min_{0 \leq m < K} v_2((M_K)^{-1}[K-1-i, m]) = 2i - v_2(i+1).$$

Remark 2.6. Setting $i = 0$ recovers Corollary 2.2: the minimum in the last row is $2 \cdot 0 - v_2(1) = 0$, consistent with all entries being odd.

Remark 2.7. The row minimum $2i - v_2(i+1)$ depends only on the row index i , not on the matrix size K . This “stability” reflects the column stability of the underlying structure. The sequence of row minimums is

$$0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, \dots$$

which equals $2i$ minus the number of trailing 1-bits in the binary representation of i .

2.2. The binomial core matrix.

Definition 2.8. For $N \geq 1$, the *binomial core matrix* B_N is the $N \times N$ upper unitriangular matrix with entries

$$B_N[a, i] = \binom{2i}{2a} \quad \text{for } 0 \leq a, i \leq N-1.$$

Note that $B_N[a, i] = 0$ for $a > i$ and $B_N[a, a] = 1$, so B_N is indeed upper unitriangular.

Theorem 2.9 (Inverse via Euler–Secant Numbers). *The inverse of the binomial core matrix is given by*

$$B_N^{-1}[a, i] = (-1)^{i-a} \binom{2i}{2a} E_{2(i-a)},$$

where E_{2n} denotes the n -th (unsigned) Euler–secant number, defined by

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)} = \sum_{n=0}^{\infty} (-1)^n E_{2n} \frac{x^{2n}}{(2n)!}.$$

The first several values are $E_0 = 1$, $E_2 = 1$, $E_4 = 5$, $E_6 = 61$, $E_8 = 1385$, $E_{10} = 50521$.

Corollary 2.10 (Carries Formula). *For all $0 \leq a \leq i \leq N-1$:*

$$v_2(B_N^{-1}[a, i]) = \operatorname{carries}(a, i-a) = s_2(a) + s_2(i-a) - s_2(i).$$

Corollary 2.11. *The Euler–secant numbers satisfy $E_{2n} \equiv 1 \pmod{4}$ for all $n \geq 0$. In particular, $v_2(E_{2n}) = 0$.*

Corollary 2.12 (Structural Properties of B_N^{-1}). (a) **Last row.** $B_N^{-1}[0, i] = (-1)^i E_{2i}$, which is always odd.

(b) **Diagonal.** $B_N^{-1}[a, a] = 1$ for all a .

- (c) **Column stability.** The entries in column i of B_N^{-1} are independent of N for $N > i$.
- (d) **Maximum valuation.** $\max_{0 \leq a \leq i} v_2(B_N^{-1}[a, i]) = \lfloor \log_2 i \rfloor$.

3. NUMERICAL VERIFICATION

We have verified Theorem 2.1, Corollary 2.2, and Theorem 2.5 for all $K \leq 16$.

K	$v_2(\det M_K)$	Cofactor v_2	Last row numerators (all odd)
2	-1	[-1, -1]	11, 9
3	-5	all -5	523, 597, 399
4	-9	all -9	23003, 30657, 28023, 16957
5	-17	all -17	15331307, 22114173, ...
6	-26	all -26	1706973557, 28435623213, ...
7	-38	all -38	3724076580251, ...
8	-49	all -49	66117499294929143, ...

TABLE 1. Verification of uniform cofactor valuation for weights 5–17.

i	0	1	2	3	4	5	6	7	8
$2i - v_2(i + 1)$	0	1	4	4	8	9	12	11	16
$K = 9$ min	0	1	4	4	8	9	12	11	16
$K = 10$ min	0	1	4	4	8	9	12	11	16

TABLE 2. Row minimum valuations match the formula $2i - v_2(i + 1)$.

4. PROOF OF THEOREM 2.1

We recall Zagier's formula [7, Theorem 1]:

$$(1) \quad M_K[a, r] = 2 \binom{2r}{2a+2} - \frac{2(2^{2r}-1)}{2^{2r}} \binom{2r}{2b+1},$$

where $b = K - 1 - a$ and $r \in \{1, \dots, K\}$. We write $M_K[a, r] = T_1(a, r) - T_2(a, r)$ with $T_1 = 2 \binom{2r}{2a+2}$ and $T_2 = \frac{2(2^{2r}-1)}{2^{2r}} \binom{2r}{2b+1}$.

Let M' denote the $K \times (K - 1)$ submatrix consisting of columns $r = 2, \dots, K$, and let column $j \in \{0, \dots, K - 2\}$ of M' correspond to $r = K - j$.

Lemma 4.1 (Sparse Last Column). *The last column of M_K (corresponding to $r = 1$) is $[-2, 0, 0, \dots, 0, 3]^T$.*

Proof. Set $r = 1$ in (1). Then $\binom{2}{2a+2} = 0$ for $a \geq 1$ and $\binom{2}{2b+1} = 0$ for $b \geq 1$. The only nonzero entries are $a = 0$ (giving -2) and $a = K-1$ (giving 3). \square

Lemma 4.2 (Column Minimum). *For each column $j \in \{0, \dots, K-2\}$ of M' , with $r = K-j$:*

$$\min_{0 \leq a \leq K-1} v_2(M'[a, j]) = v_2(r) + 2 - 2r.$$

Moreover, this minimum is achieved by both $a = j$ (diagonal) and $a = K-1$ (last row).

Proof. **Step 1: Last row achieves the minimum.** When $a = K-1$, we have $b = 0$, so T_2 involves $\binom{2r}{1} = 2r$. Since $v_2(2^{2r} - 1) = 0$, we get $v_2(T_2(K-1, r)) = v_2(r) + 2 - 2r$. For $j > 0$, $\binom{2r}{2K} = 0$ (since $2K > 2r$), so $T_1 = 0$; for $j = 0$, $v_2(T_1) = 1$. In both cases $v_2(T_1) > v_2(T_2)$ for $r \geq 2$, so $v_2(M'[K-1, j]) = v_2(r) + 2 - 2r$.

Step 2: Diagonal achieves the same value. When $a = j = K-r$, we have $b = r-1$, so T_2 involves $\binom{2r}{2r-1} = 2r$. This gives the same valuation as Step 1.

Step 3: All other rows have $v_2 \geq v_2(r) + 2 - 2r$. For the T_2 term, applying Kummer's theorem gives

$$v_2 \binom{2r}{2b+1} = 1 + v_2 \binom{r}{b} + v_2(r-b).$$

By the identity $\binom{r}{b}(r-b) = r \binom{r-1}{b}$, we have $v_2 \binom{r}{b} + v_2(r-b) \geq v_2(r)$. Therefore $v_2(T_2(a, r)) \geq v_2(r) + 2 - 2r$ for all a . Since $v_2(T_1) \geq 1 > v_2(r) + 2 - 2r$ for $r \geq 2$, the claim follows. \square

Proof of Theorem 2.1. For each $\ell \in \{0, \dots, K-1\}$, let M'_ℓ denote the $(K-1) \times (K-1)$ minor obtained by removing row ℓ from M' .

Case $\ell = K-1$. The minor M'_{K-1} uses rows $0, \dots, K-2$. By Lemma 4.2, the diagonal permutation $\sigma(j) = j$ is the unique permutation achieving the minimum v_2 sum $\sum_j (v_2(K-j) + 2 - 2(K-j))$. Therefore $v_2(\det M'_{K-1})$ equals this sum.

Case $\ell < K-1$. The minor M'_ℓ includes row $K-1$. We reduce the no-cancellation claim to a statement about binary submask incidence matrices over \mathbb{F}_2 .

Step (a): Submask characterization. Define the normalized matrix $\hat{N}[a, j] = M'[a, j] \cdot 2^{-\text{col min}(j)}$, where $\text{col min}(j)$ is the minimum v_2 in column j . Then $v_2(\hat{N}[a, j]) \geq 0$, and we claim $v_2(\hat{N}[a, j]) = 0$ if and only if $b = K-1-a$ is a binary submask of $r-1 = K-1-j$ (written $b \subseteq r-1$).

Indeed, by Lemma 4.2, the column minimum is achieved by T_2 . From the analysis in Step 3 of Lemma 4.2, $v_2(T_2(a, r))$ equals the column minimum plus $v_2 \binom{r-1}{b}$. By Kummer's theorem, $\binom{r-1}{b}$ is odd if and only if $\text{carries}(b, r-1-b) = 0$, i.e., $b \subseteq r-1$. The T_1 term satisfies $v_2(T_1) \geq 1$, while $\text{col min}(j) = v_2(r) + 2 - 2r \leq 1 - r \leq -1$ for $r \geq 2$, so T_1 never affects which entries achieve the column minimum.

Step (b): The submask incidence matrix. Re-indexing via $i = K-1-a$, $c = K-1-j$, the matrix $\hat{N} \bmod 2$ becomes the $K \times (K-1)$ submask incidence matrix N with rows $i \in \{0, \dots, K-1\}$, columns $c \in \{1, \dots, K-1\}$, and $N[i, c] = \mathbf{1}[i \subseteq c]$.

We claim that every $(K-1) \times (K-1)$ minor of N has determinant 1 over \mathbb{F}_2 . To see this, note:

- (i) For each $c \geq 1$, the binary submasks of c in $\{0, \dots, K-1\}$ are exactly all $2^{s_2(c)}$ submasks of c . Since $s_2(c) \geq 1$, each column sum is even, so $\sum_{i=0}^{K-1} \text{row}_i(N) = 0$ over \mathbb{F}_2 .
- (ii) The $(K-1) \times (K-1)$ submatrix N_0 with rows and columns both in $\{1, \dots, K-1\}$ is the zeta function of the poset $(\{1, \dots, K-1\}, \subseteq)$. Under any linear extension of \subseteq , this matrix is upper unitriangular, so $\det(N_0) = 1$ over \mathbb{F}_2 . Hence $\text{rank}(N) = K-1$.
- (iii) By (i), the unique linear dependency among the K rows of N is $\sum_{i=0}^{K-1} \text{row}_i = 0$, in which every row participates with coefficient 1. Removing any single row eliminates this dependency, leaving $K-1$ linearly independent vectors in \mathbb{F}_2^{K-1} . Therefore every $(K-1) \times (K-1)$ minor has determinant 1.

Step (c): Lifting to \mathbb{Q} . The determinant of M'_ℓ factors as $\det(M'_\ell) = \prod_j 2^{\text{col min}(j)} \cdot \det(\hat{N}_\ell)$. Since $\hat{N}_\ell \equiv \hat{N}_{i_0} \pmod{2}$ and $\det(\hat{N}_{i_0}) = 1$ over \mathbb{F}_2 , we conclude $v_2(\det(\hat{N}_\ell)) = 0$, giving $v_2(\det M'_\ell) = S$.

Synthesis. By Lemma 4.1, expanding $\det M_K$ along the last column:

$$\det M_K = -2 \cdot C(0, K-1) + 3 \cdot C(K-1, K-1).$$

Both cofactors satisfy $v_2(C(\ell, K-1)) = S$ where $S = \sum_j (v_2(K-j) + 2 - 2(K-j))$. Since $v_2(-2 \cdot C(0, K-1)) = 1 + S > S = v_2(3 \cdot C(K-1, K-1))$, we get $v_2(\det M_K) = S$, and hence $v_2(C(\ell, K-1)) = v_2(\det M_K)$ for all ℓ . \square

5. PROOF OF THEOREM 2.5

The proof proceeds by decomposing M_K into its lower and upper triangular parts and analyzing the 2-adic structure of the inverse.

Proof of Theorem 2.5. **Step 1: Decomposition.** Write $M_K = L + U$ where $L[a, m] = -T_2(a, m)$ is lower triangular (the T_2 term from (1)) and $U[a, m] = T_1(a, m)$ is upper triangular (the T_1 term). Then

$$M_K^{-1} = (L + U)^{-1} = (I + L^{-1}U)^{-1}L^{-1}.$$

Let $P = (I + L^{-1}U)^{-1}$.

Step 2: Diagonal of L . For the diagonal entry $L[a, a]$ with $r = K-a$ and $b = K-1-a$, we have $b = r-1$, so

$$L[a, a] = -\frac{2(4^r - 1)}{4^r} \cdot 2r = -4r(1 - 4^{-r}).$$

Since $4^r - 1$ is odd (one less than a power of 4), we get

$$v_2(L[a, a]) = v_2(4r) + v_2(1 - 4^{-r}) = 2 + v_2(r) + (0 - 2r) = v_2(r) - 2r + 2.$$

With $r = K - a$ and $i = K - 1 - a$ (so $r = i + 1$), this becomes

$$v_2(L[a, a]) = v_2(i + 1) - 2(i + 1) + 2 = v_2(i + 1) - 2i.$$

Step 3: Diagonal of L^{-1} . Since L is lower triangular, $L^{-1}[a, a] = 1/L[a, a]$, giving

$$v_2(L^{-1}[a, a]) = -v_2(L[a, a]) = 2i - v_2(i + 1).$$

Step 4: Row minimum of L^{-1} . By back-substitution, the entries of L^{-1} in the lower triangle satisfy

$$v_2(L^{-1}[a, m]) \geq 2i - v_2(i + 1), \quad \text{for } m \leq a,$$

with equality at the diagonal $m = a$. To see this, note that $L^{-1}[a, a] = 1/L[a, a]$ achieves exactly $2i - v_2(i + 1)$, and the off-diagonal entries involve sums of products that have at least this valuation.

Step 5: The perturbation preserves the row minimum. We have $M_K^{-1} = P \cdot L^{-1}$ where $P = (I + L^{-1}U)^{-1}$.

Lemma 5.1 (Perturbation Bound). *For all $K \geq 2$ and all entries (a, m) : $v_2((L^{-1}U)[a, m]) \geq 1$.*

Proof. (1) Since $U[k, m] = 2 \binom{2r}{2k+2}$, the explicit factor of 2 gives $v_2(U[k, m]) \geq 1$.

(2) We claim $v_2(L^{-1}[a, k]) \geq 0$ for all entries. By Step 3, $v_2(L^{-1}[a, a]) = 2i - v_2(i + 1)$ where $i = K - 1 - a$. This is nonnegative: for $i = 0$, the value is 0; for $i \geq 1$, since $v_2(n) \leq \log_2(n)$ for any $n \geq 1$, we have $v_2(i + 1) \leq \log_2(i + 1) \leq i$ (because $i + 1 \leq 2^i$ for $i \geq 1$), hence $2i - v_2(i + 1) \geq i \geq 0$. Off-diagonal entries have $v_2 \geq v_2(L^{-1}[a, a]) \geq 0$.

(3) Each term in $(L^{-1}U)[a, m] = \sum_k L^{-1}[a, k] \cdot U[k, m]$ satisfies $v_2(\text{term}) \geq 0 + 1 = 1$.

(4) By the ultrametric inequality, $v_2((L^{-1}U)[a, m]) \geq 1$. □

By Lemma 5.1:

- The Neumann series $P = I - L^{-1}U + (L^{-1}U)^2 - \dots$ converges 2-adically.
- $v_2(P[a, a]) = 0$ (the leading term is 1) and $v_2(P[a, k]) \geq 1$ for $k \neq a$.

For $M_K^{-1}[a, m] = \sum_k P[a, k] \cdot L^{-1}[k, m]$, the dominant term is $P[a, a] \cdot L^{-1}[a, m]$, which has valuation $0 + v_2(L^{-1}[a, m])$. The terms with $k \neq a$ have valuation at least $1 + v_2(L^{-1}[k, m])$.

At the column m where L^{-1} achieves its row minimum (namely, $m = a$), the main term has $v_2 = 2i - v_2(i + 1)$, and the other terms have strictly higher valuation due to the $+1$ from P and the structure of L^{-1} . Therefore

$$\min_m v_2(M_K^{-1}[a, m]) = 2i - v_2(i + 1).$$

□

6. THE BINOMIAL CORE MATRIX

In this section we prove Theorem 2.9 and its corollaries. The matrix $B_N[a, i] = \binom{2i}{2a}$ arises naturally in the study of Zagier's matrix: the 2-adic dominant term in each column of M_K involves binomial coefficients $\binom{2r}{2b+1}$, whose valuations are controlled by carries in the same way as $\binom{2i}{2a}$ (see Lemma 4.2).

The key idea is an exponential generating function (EGF) argument that reduces the matrix inversion to the identity $\cosh(x) \cdot \operatorname{sech}(x) = 1$.

Proof of Theorem 2.9. The matrix equation $B_N^{-1} \cdot B_N = I$ says that for each a ,

$$(2) \quad \sum_{k=a}^i B_N^{-1}[a, k] \binom{2i}{2k} = \delta_{a,i} \quad \text{for all } i \geq a.$$

Define the exponential generating function for row a :

$$W_a(x) := \sum_{k \geq a} B_N^{-1}[a, k] \frac{x^{2k}}{(2k)!}.$$

Then the left side of (2) is the coefficient of $\frac{x^{2i}}{(2i)!}$ in the Cauchy product $W_a(x) \cdot \cosh(x)$, since

$$\left[\frac{x^{2i}}{(2i)!} \right] W_a(x) \cdot \cosh(x) = \sum_k B_N^{-1}[a, k] \binom{2i}{2k}.$$

The identity (2) therefore becomes $W_a(x) \cdot \cosh(x) = \frac{x^{2a}}{(2a)!}$, giving

$$(3) \quad W_a(x) = \frac{x^{2a}}{(2a)!} \operatorname{sech}(x).$$

Since $\operatorname{sech}(x) = \sum_{n \geq 0} (-1)^n E_{2n} \frac{x^{2n}}{(2n)!}$, extracting the coefficient of x^{2i} from (3):

$$B_N^{-1}[a, i] = (2i)! \cdot [x^{2i}] \frac{x^{2a}}{(2a)!} \operatorname{sech}(x) = \frac{(2i)!}{(2a)!} \cdot \frac{(-1)^{i-a} E_{2(i-a)}}{(2(i-a))!} = (-1)^{i-a} \binom{2i}{2a} E_{2(i-a)}.$$

□

Proof of Corollary 2.11. The recurrence from $\cosh(x) \cdot \operatorname{sech}(x) = 1$ gives, for $n \geq 1$:

$$E_{2n} = \sum_{k=1}^n (-1)^{k+1} \binom{2n}{2k} E_{2(n-k)}.$$

We prove $E_{2n} \equiv 1 \pmod{4}$ by induction. The base case $E_0 = 1$ is clear. For $n \geq 1$, assuming $E_{2(n-k)} \equiv 1 \pmod{4}$ for all $k \geq 1$:

$$E_{2n} \equiv \sum_{k=1}^n (-1)^{k+1} \binom{2n}{2k} = 1 - \sum_{k=0}^n (-1)^k \binom{2n}{2k} = 1 - \operatorname{Re}(1+i)^{2n} = 1 - 2^n \cos(n\pi/2) \pmod{4}.$$

For $n \geq 2$, $2^n \equiv 0 \pmod{4}$, giving $E_{2n} \equiv 1 \pmod{4}$. For $n = 1$: $E_2 = 1 \equiv 1 \pmod{4}$. \square

Proof of Corollary 2.10. By Theorem 2.9, $B_N^{-1}[a, i] = (-1)^{i-a} \binom{2i}{2a} E_{2(i-a)}$. Since $v_2(E_{2(i-a)}) = 0$ by Corollary 2.11, we have

$$v_2(B_N^{-1}[a, i]) = v_2 \binom{2i}{2a}.$$

By Kummer's theorem, $v_2 \binom{2i}{2a} = \text{carries}(2a, 2i - 2a)$. Since multiplying both arguments by 2 shifts binary representations one bit left without introducing new carries, $\text{carries}(2a, 2i - 2a) = \text{carries}(a, i - a)$. \square

Proof of Corollary 2.12. Part (a): setting $a = 0$ gives $B_N^{-1}[0, i] = (-1)^i E_{2i}$, which is odd since $v_2(E_{2i}) = 0$.

Part (b): setting $a = i$ gives $B_N^{-1}[i, i] = \binom{2i}{2i} E_0 = 1$.

Part (c): by Theorem 2.9, $B_N^{-1}[a, i]$ depends only on a and i , not on N .

Part (d): by Corollary 2.10, $\max_{0 \leq a \leq i} \text{carries}(a, i - a) = \lfloor \log_2 i \rfloor$ (achieved when a and $i - a$ have maximal carry count in binary addition). \square

7. CONNECTION BETWEEN THE RESULTS

The proofs of Theorems 2.1, 2.5, and 2.9 all depend on the same primitive: the interaction between 2-adic valuations and binary carry counting in binomial coefficients.

Specifically, in Lemma 4.2, the key estimate

$$v_2 \binom{2r}{2b+1} = 1 + v_2 \binom{r}{b} + v_2(r - b)$$

reduces to $v_2 \binom{r}{b} = \text{carries}(b, r - b)$ by Kummer's theorem. The identity $\binom{r}{b}(r - b) = r \binom{r-1}{b}$ then shows that the minimum is achieved when $\text{carries}(b, r - b)$ is minimized, i.e., when $b = 0$ or $b = r - 1$.

In the binomial core matrix, the same mechanism operates transparently: the inverse $B_N^{-1}[a, i] = (-1)^{i-a} \binom{2i}{2a} E_{2(i-a)}$ factors into a binomial coefficient (whose v_2 is a carry count) and an Euler number (which is a 2-adic unit). The carries formula $v_2(B_N^{-1}[a, i]) = \text{carries}(a, i - a)$ then gives the complete 2-adic structure.

In Theorem 2.5, the lower triangular matrix L (the T_2 part of Zagier's formula) has diagonal valuations $v_2(L[a, a]) = v_2(i + 1) - 2i$, which directly inverts to give the row minimum formula $2i - v_2(i + 1)$ for L^{-1} . The perturbation by the upper triangular T_1 term does not lower these minima because $v_2(L^{-1}U) \geq 1$, as shown in Lemma 5.1.

8. DISCUSSION AND OPEN QUESTIONS

Theorem 2.5 provides a partial answer to the question of the full 2-adic structure of $(M_K)^{-1}$: we now know the *minimum* valuation in each row. However, the complete picture remains open.

Question 8.1 (Full 2-adic structure of $(M_K)^{-1}$). What is the 2-adic valuation of *all* entries of $(M_K)^{-1}$? Computation suggests that the lower triangular part (where the T_2 term of L^{-1} is nonzero) satisfies

$$v_2(M_K^{-1}[K-1-i, m]) = 2i - v_2(i+1) + v_2\binom{K-1-m}{i} + \epsilon_{i,m}$$

where $\epsilon_{i,m} \geq 0$ is a correction term that vanishes for $K \in \{2, 3, 5, 9\}$ (when $K-1$ is a power of 2) but is positive for other K . Can this correction be characterized?

Question 8.2 (Odd primes). Does similar structure exist for odd primes p ? By Kummer's theorem, $v_p\binom{m+n}{m} = \text{carries}_p(m, n)$ counts p -adic carries. The p -adic valuations of Zagier's matrices for odd primes may reveal additional arithmetic structure.

Question 8.3 (Motivic interpretation). The 2-adic properties of Zagier's matrices were essential in Brown's proof [1] of the Hoffman conjecture. Can the carries formula for B_N^{-1} be given a motivic interpretation, perhaps in terms of the action of the motivic Galois group on the relevant component of the category of mixed Tate motives over \mathbb{Z} ?

Question 8.4 (Connection to q -zeta functions). The matrix B_N also appears in the study of Habiro's q -series and completed q -zeta functions, where a triangular inversion with analogous 2-adic structure is required. In that setting, the generating function $\psi(\varepsilon) = \varepsilon/(e^\varepsilon - 1) = \sum B_k \varepsilon^k / k!$ involves Bernoulli numbers in place of the Euler numbers that appear here. Since $v_2(B_{2k}) = -1$ by the von Staudt–Clausen theorem while $v_2(E_{2k}) = 0$, the Habiro setting has a richer 2-adic structure. Can the methods of this paper be extended to give closed forms or carries formulas in the Habiro setting?

ACKNOWLEDGMENTS

The author thanks the anonymous referee for helpful comments. Computations were performed using Python with exact rational arithmetic.

REFERENCES

- [1] F. Brown, Mixed Tate motives over \mathbb{Z} , Ann. of Math. **175** (2012), 949–976.
- [2] M. Hoffman, The algebra of multiple harmonic series, J. Algebra **194** (1997), 477–495.
- [3] K. Ihara, M. Kaneko, and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. **142** (2006), 307–338.
- [4] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. **44** (1852), 93–146.
- [5] Z. Li, Another proof of Zagier's evaluation formula of the multiple zeta values $\zeta(2, \dots, 2, 3, 2, \dots, 2)$, Math. Res. Lett. **20** (2013), 947–950.
- [6] F. W. J. Olver et al., eds., NIST Digital Library of Mathematical Functions, Release 1.2.3, <https://dlmf.nist.gov/>, 2024.
- [7] D. Zagier, Evaluation of the multiple zeta values $\zeta(2, \dots, 2, 3, 2, \dots, 2)$, Ann. of Math. **175** (2012), 977–1000.