ON THE 2-ADIC STRUCTURE OF ZAGIER’S MZV
MATRICES

ABSTRACT. We investigate the 2-adic properties of the inverse of Za-

gier’s matrix Mg, which expresses Hoffman elements H (a, b) = ¢(2,...,2,3,2,...,2)
as rational linear combinations of products ((2)™¢(2n + 1). We prove

that all entries in the last row of (M) ' have 2-adic valuation zero

(Theorem , implying that all coefficients in the decomposition of
¢(2)¥~'¢(3) into the Hoffman basis are odd integers. More generally,

we establish a row minimum formula (Theorem : the minimum 2-

adic valuation in row K — 1 — 4 of (Mg)™" equals 2i — va(i + 1). As

a companion result, we establish a closed-form inverse for the binomial

core matrix Bn|a,i| = (22;) (Theorem [2.9)): its inverse is given explicitly
in terms of the Euler—secant numbers Fs, and the hyperbolic secant
function, with the exact 2-adic valuation of every entry governed by bi-
nary carry counting via Kummer’s theorem. As byproducts, we obtain
the closed formula vs(det M) = 2K — s2(K) — K? and the congruence
Es, =1 (mod 4) for all n > 0.

1. INTRODUCTION

Multiple zeta values (MZVs) are real numbers defined for positive integers
ki,...,ky with k, > 2 by the convergent series

Clhasokn) = ) o !

ko kn
O<my<-<my, M1 " Mn
A central result, proved by Brown [I], states that every MZV is a Q-linear
combination of the Hoffman basis elements ((ki,...,ky,) where each k; €
{2,3}.
Zagier [7] gave explicit formulas for the special MZVs
H(a,b) :=((2,...,2,3,2,...,2)
—— H{_/
a

as rational linear combinations of products ((2)™((2n + 1). For each odd
weight w = 2K + 1, this gives a K x K matrix Mg expressing the vector of
Hoffman elements { H (a, K —1—a)}2 ! in terms of products {¢(2)"¢(2(K —
m) + 1)} 5 Zo-

Zagier proved that det(Mg) # 0 using a 2-adic argument: the matrix is
upper triangular modulo 2 with odd diagonal entries. This 2-adic structure
played a crucial role in Brown’s motivic proof [IJ.
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In this paper, we investigate the 2-adic structure of the inverse matrix
(Mg)~! and of a related binomial matrix. Our first main result (Theo-
rem establishes that all entries in the last row of (Mg)~! have 2-adic
valuation zero, implying that the decomposition of ¢(2)%~1¢(3) into the
Hoffman basis has exclusively odd coefficients. Our second main result (The-
orem generalizes this to all rows: the minimum 2-adic valuation in row
K —1—iof (Mg)™! equals 2i —vy(i+ 1), where v2 denotes the 2-adic valua-
tion. Our third main result (Theorem [2.9) gives a closed-form inverse for the
binomial core matrix By/[a,i] = (5'), expressed in terms of the Euler—secant
numbers and the function sech(x), with the exact 2-adic valuation governed
by the binary carry function.

These results are connected by a common mechanism: binary carry count-
ing via Kummer’s theorem. In the Zagier setting, this mechanism appears
through the binomial coefficients (25_7;1) that dominate the 2-adic structure
of each column. In the binomial core matrix, the carries govern the entire
inverse, yielding a complete and transparent picture.

2. STATEMENT OF RESULTS

Let va(x) denote the 2-adic valuation of x € Q*, let sa2(n) denote the
number of 1-bits in the binary expansion of n, and define the binary carry
count

carries(a, b) := sa(a) + s2(b) — s2(a + b),
which equals the number of carries when adding a and b in binary (Kummer’s

theorem gives vy (ajb) = carries(a, b)).

2.1. The Zagier matrix.

Theorem 2.1 (Uniform Cofactor Valuation). For Zagier’s matriz Mg of
weight 2K + 1, all last-column cofactors have the same 2-adic valuation:

v2(C(j, K — 1)) = va(det M) for all j € {0,..., K — 1},
where C(j, K — 1) is the (j, K — 1) cofactor of M.

Corollary 2.2 (Odd Last Row). All entries in the last row of (M)~ have
2-adic valuation zero:

va(Mg) 'K —1,4]) =0 forall j€{0,...,K —1}.

Remark 2.3. The last row of (M )~! gives the coefficients expressing ¢ (2)%~1¢(3)
in the Hoffman basis. Corollary implies that these coefficients are all ra-
tionals with odd numerator and odd denominator (in lowest terms).

Remark 2.4. The proof yields the closed formula

K
va(det M) = (va(r) +2 = 2r) = 2K — s5(K) — K>,
r=2
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The following theorem generalizes Corollary [2.2] from the last row to all
rows.

Theorem 2.5 (Row Minimum Formula). For all K > 2 and 0 <i < K —1,
the minimum 2-adic valuation in row K —1 —1i of (Mg)~! is

. -1 1 o _ .
OSIHTW,IEKUQ((MK) (K —1—1i,m]) = 2i —va(i + 1).

Remark 2.6. Setting ¢ = 0 recovers Corollary the minimum in the last
row is 2 -0 — va(1) = 0, consistent with all entries being odd.

Remark 2.7. The row minimum 2i —vy(i+ 1) depends only on the row index
1, not on the matrix size K. This “stability” reflects the column stability of
the underlying structure. The sequence of row minimums is

0,1,4,4,8,9,12,11,16, 17,20, 20, 24, 25, 28, 26, 32, . . .

which equals 27 minus the number of trailing 1-bits in the binary represen-
tation of i.

2.2. The binomial core matrix.

Definition 2.8. For N > 1, the binomial core matriz By is the N x N
upper unitriangular matrix with entries

9;
Byla,i] = < Z) for 0 < a,i <N —1.
2a
Note that Byla,i] = 0 for a > i and By[a,a] = 1, so By is indeed upper
unitriangular.

Theorem 2.9 (Inverse via Euler-Secant Numbers). The inverse of the bi-
nomial core matriz is given by

e (2
By o = (-1 (51 ) Bai-a

where Ea, denotes the n-th (unsigned) Euler—secant number, defined by

1 o . x?n
sech(z) = (@) = ;(—1) EQnW.

The first several values are g =1, Fs =1, By =5, Eg = 61, Eg = 1385,
FEqp = 50521.

Corollary 2.10 (Carries Formula). For all0 <a <i< N —1:
V9 (BK,1 [a,i]) = carries(a,i — a) = sa2(a) + s2(i — a) — s2(i).

Corollary 2.11. The Euler—secant numbers satisfy FEop = 1 (mod 4) for
all n > 0. In particular, va(Eay,) = 0.

Corollary 2.12 (Structural Properties of By'). (a) Last row. By'[0,i] =

(—1)!Eq;, which is always odd.
(b) Diagonal. By'la,a] =1 for all a.
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(c) Column stability. The entries in column i of B;,l are independent
of N for N > 1.
(d) Mazimum valuation. maxo<a<; v2(By'[a,i]) = |logyi].

3. NUMERICAL VERIFICATION

We have verified Theorem Corollary and Theorem for all
K < 16.

K wvy(det M) Cofactor vo Last row numerators (all odd)
2 ~1 [—1,-1] 11,9

3 ) all —5 523, 597, 399

4 -9 all —9 23003, 30657, 28023, 16957

5 —17 all —17 15331307, 22114173, ...

6 —26 all —26 1706973557, 28435623213, ...
7 —38 all —38 3724076580251, ...

8 —49 all —49 66117499294929143, ...

TABLE 1. Verification of uniform cofactor valuation for
weights 5-17.

i 0012345 6 7 8
2—wv(i+1)|0 1 4 4 8 9 12 11 16
K=9min [0 1 4 4 8 9 12 11 16

K=10min O 1 4 4 8 9 12 11 16

TABLE 2. Row minimum valuations match the formula 27 —
V9 (Z + 1).

4. PROOF OF THEOREM [2.1]

We recall Zagier’s formula [7, Theorem 1]:

(1) Micla,r] = 2<2a2~: 2> N 2(2222_1) (2b2; 1>’

where b =K —1—a and r € {1,...,K}. We write Mg[a,r| = T1(a,r) —
2r
Ty(a,r) with T1 = 2(,;7,) and T = 2(22% . (ap1)-
Let M’ denote the K x (K — 1) submatrix consisting of columns r =
2,..., K, and let column j € {0,..., K —2} of M’ correspond to r = K — j.

Lemma 4.1 (Sparse Last Column). The last column of Mg (corresponding
tor =1)is[-2,0,0,...,0,3]T.
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Proof. Set r =1 in . Then (2a2+2) =0 for a > 1 and (2b%rl) =0 forb>1.

The only nonzero entries are a = 0 (giving —2) and a = K —1 (giving 3). O

Lemma 4.2 (Column Minimum). For each column j € {0,..., K — 2} of
M', withr =K — j:
i M'la,j]) = 2 —2r.
ocin | va(M'[a, j]) = va(r) + T
Moreover, this minimum is achieved by both a = j (diagonal) and a = K —1
(last row).

Proof. Step 1: Last row achieves the minimum. When a = K — 1,
we have b = 0, so T involves (2{) = 2r. Since v2(2%" — 1) = 0, we get
va(To(K —1,7)) = va(r) +2 — 2r. For j > 0, (;5) = 0 (since 2K > 2r), so
T) = 0; for j = 0, v2(T1) = 1. In both cases va(11) > vo(T2) for r > 2, so
ve(M'[K —1,j]) = va(r) +2 — 2r.

Step 2: Diagonal achieves the same value. Whena =j = K —r,
we have b = r — 1, so T involves (2321) = 2r. This gives the same valuation
as Step 1.

Step 3: All other rows have vy > vy(r) + 2 — 2r. For the T5 term,
applying Kummer’s theorem gives

2r r
=1 —b).
V9 (2b+ 1> + Vg (b) +’02(T b)

By the identity (})(r — b) = r(Tgl), we have vg(}) + va(r — b) > va(r).
Therefore vo(To(a,r)) > va(r) + 2 — 2r for all a. Since vo(T1) > 1 > vy(r) +
2 — 2r for r > 2, the claim follows. U

Proof of Theorem[2.1. For each ¢ € {0, ..., K —1}, let M/ denote the (K —
1) x (K — 1) minor obtained by removing row ¢ from M.

Case { = K —1. The minor M}, usesrows0,..., K—2. By Lemma
the diagonal permutation o(j) = j is the unique permutation achieving the
minimum vz sum ) (ve(K — j) +2 — 2(K — j)). Therefore vo(det Mp_;)
equals this sum.

Case ¢ < K — 1. The minor M includes row K — 1. We reduce the no-
cancellation claim to a statement about binary submask incidence matrices
over Fs.

Step (a): Submask characterization. Define the normalized matrix
Nla, j] = M'[a, j]-27¢° ™) where col min(5) is the minimum vy in column
4. Then vy(NJa,5]) > 0, and we claim vy(NJa,5]) = 0 if and only if b =
K —1—ais a binary submask of r — 1 = K — 1 — j (written b C r — 1).

Indeed, by Lemma [£.2] the column minimum is achieved by T5. From the
analysis in Step 3 of Lemma v2(Ta(a,r)) equals the column minimum
plus v (rgl). By Kummer’s theorem, (Tgl) is odd if and only if carries(b, r —
1-b) =0,i.e., b Cr—1. The T} term satisfies va(77) > 1, while col min(j) =
va(r) +2—2r < 1—r < —1 for r > 2, so T} never affects which entries
achieve the column minimum.



6 ON THE 2-ADIC STRUCTURE OF ZAGIER’S MZV MATRICES

Step (b): The submask incidence matrix. Re-indexing via i =
K—1—a, ¢ = K—1—j, the matrix N mod 2 becomes the K x (K —1) submask
incidence matrix N with rows ¢ € {0,..., K—1}, columns ¢ € {1,..., K—1},
and N[i,c] =1[i C ¢].

We claim that every (K — 1) x (K — 1) minor of N has determinant 1
over Fy. To see this, note:

(i) For each ¢ > 1, the binary submasks of cin {0, ..., K —1} are exactly
all 2°2(9) submasks of ¢. Since sa(c) > 1, each column sum is even,
SO Zfigl row;(N) = 0 over Fa.

(ii) The (K —1) x (K —1) submatrix Ny with rows and columns both in
{1,..., K — 1} is the zeta function of the poset ({1,..., K —1},C).
Under any linear extension of C, this matrix is upper unitriangular,
so det(Ny) = 1 over Fy. Hence rank(N) = K — 1.

(iii) By (i), the unique linear dependency among the K rows of N is
Zfigl row; = 0, in which every row participates with coefficient 1.
Removing any single row eliminates this dependency, leaving K — 1
linearly independent vectors in Fé( ~!. Therefore every (K — 1) x
(K — 1) minor has determinant 1.

Step (c): Lifting to Q. The determinant of M, factors as det(M;) =
I1; gcol min(7) . det(Ny). Since Ny = N;, (mod 2) and det(N;,) = 1 over Fy,
we conclude vg(det(Ny)) = 0, giving va(det M) = S.

Synthesis. By Lemma expanding det Mk along the last column:

det Mg = —2-C(0,K —1)+3-C(K —1,K —1).

Both cofactors satisfy va(C(¢, K — 1)) = S where S =3 (va(K —j) +2 —
2(K —3j)). Since v2(—2-C(0, K —1)) =1+ 5 > S =13-C(K -1, K —1)),
we get va(det M) = S, and hence va(C(¢, K — 1)) = va(det My ) for all
L. O

5. PROOF OF THEOREM

The proof proceeds by decomposing My into its lower and upper trian-
gular parts and analyzing the 2-adic structure of the inverse.

Proof of Theorem[2.5 Step 1: Decomposition. Write Mg = L+ U
where L{a,m] = —T(a,m) is lower triangular (the T term from (1)) and
Ula,m| = T1(a,m) is upper triangular (the 77 term). Then

Mt =L +U) ' =1+L7to) L

Let P=(I+L'U)"L
Step 2: Diagonal of L. For the diagonal entry L[a,a] with r = K — a
and b=K —1—a, we have b=r — 1, so
2(4" - 1)

L[CL, (l] = —T - 2r = —4r (1 — 4—7’) .
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Since 4" — 1 is odd (one less than a power of 4), we get

va(Lla,a)) = va(4r) + v2(1 —47") =24 va(r) + (0 — 2r) = va(r) — 2r + 2.

Withr =K —aand i =K —1—a (sor =i+ 1), this becomes
vo(Lla,a]) =va(i+1) —2(i + 1)+ 2 =w9(i + 1) — 2i.

Step 3: Diagonal of L~!. Since L is lower triangular, L™ ![a,a] =
1/Lla,a], giving

va(L 7 a,a]) = —va(L[a, a]) = 2i — v (i + 1).

Step 4: Row minimum of L~!'. By back-substitution, the entries of
L~ in the lower triangle satisfy

va(L™a,m]) > 2i —wvo(i + 1), form < a,

with equality at the diagonal m = a. To see this, note that L=![a,a] =
1/L[a, a] achieves exactly 2i — va(i + 1), and the off-diagonal entries involve
sums of products that have at least this valuation.

Step 5: The perturbation preserves the row minimum. We have
Myt =P.L7! where P = (I + L~'U)~".

Lemma 5.1 (Perturbation Bound). For all K > 2 and all entries (a,m):
vo((L71U)[a,m]) > 1.

Proof. (1) Since Uk, m] = 2(2]3;2), the explicit factor of 2 gives vo(U[k, m]) >
1.

(2) We claim vo(L~![a, k]) > 0 for all entries. By Step 3, vo(L"[a,a]) =
2i —va(i+ 1) where i = K — 1 — a. This is nonnegative: for ¢ = 0, the value
is 0; for ¢ > 1, since va(n) < logz(n) for any n > 1, we have va(i + 1) <
logy(i 4+ 1) < i (because i +1 < 2' for i > 1), hence 2i — va(i + 1) >3 > 0.
Off-diagonal entries have ve > vo(L™!a, a]) > 0.

(3) Each term in (L~U)[a,m] = Y, L™ {a, k]-U[k, m] satisfies vo(term) >
0+1=1.

(4) By the ultrametric inequality, vo((L~1U)[a, m]) > 1. O
By Lemma [5.1}
e The Neumann series P = [ — L7'U + (L7'U)% — - converges 2-
adically.

e vy(Pla,al) = 0 (the leading term is 1) and vo(PJa, k]) > 1 for k # a.

For Mg'la,m] = 3", Pla,k] - L7![k,m], the dominant term is P[a, a] -

L~ Ya,m], which has valuation 0 + vo(L™1[a,m]). The terms with k # a
have valuation at least 1 + vo(L ™[k, m]).

At the column m where L~! achieves its row minimum (namely, m = a),

the main term has vy = 2i — v(i + 1), and the other terms have strictly

higher valuation due to the 4+1 from P and the structure of L™!. Therefore

min vo(Mpta, m]) = 2i — va(i + 1).

O
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6. THE BINOMIAL CORE MATRIX

In this section we prove Theorem and its corollaries. The matrix
Byla,i] = (22;) arises naturally in the study of Zagier’s matrix: the 2-adic
dominant term in each column of My involves binomial coefficients (25_7;1),

whose valuations are controlled by carries in the same way as (222) (see

Lemma .

The key idea is an exponential generating function (EGF) argument that
reduces the matrix inversion to the identity cosh(z) - sech(z) = 1.

Proof of Theorem [2.9. The matrix equation B;,l - Bx = I says that for each
a7

i ‘
2
(2) Z By'la, k] <2]i> =04, foralli>a.
k=a
Define the exponential generating function for row a:

Wa(z) = > By'la, k] (
k>a

J:Qk
2k)!°
Then the left side of is the coefficient of (‘2—2;;, in the Cauchy product
W, (zx) - cosh(zx), since

[ éj)‘] W,(z) - cosh(z) = Xk: By [a, k] (;;) :

2a

The identity therefore becomes W, () - cosh(z) = %, giving

an
(3) W,(x) = )1 sech(z).

Since sech(z) = Enzo(—l)”Egn%, extracting the coefficient of 2% from (3):

20 O (=1)"Eyii_g (2
By ] = (20Ha) o see) = 20 B gy (Mg,

[l
Proof of Corollary[2.11] The recurrence from cosh(x)-sech(z) = 1 gives, for

n > 1:
" 2n
_ E : k+1
Eon = k:1(_1) (2]{?) E2(n7k)'

We prove Es, = 1 (mod 4) by induction. The base case Fy = 1 is clear.
For n > 1, assuming Ey(,_;) =1 (mod 4) for all k£ > 1:
n n

Esp = Z(—l)kﬂ <§Z> = 1—2(—1)k (;Z) = 1-Re(1+i)?" = 1-2"cos(nm/2) (mod 4).

k=0
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Forn >2,2" =0 (mod 4), giving Fy, =1 (mod 4). Forn=1: B, =1=1
(mod 4). O

Proof of Corollary[2.10. By Theor By'la,i] = (=1)i® (222)E2(i,a).

Since v2(Ey(i—q)) = 0 by Corollary we have

or (B [a,1]) = vs (;;)

By Kummer’s theorem, vo (22;) = carries(2a, 2i —2a). Since multiplying both
arguments by 2 shifts binary representations one bit left without introducing
new carries, carries(2a, 2i — 2a) = carries(a,i — a). O

Proof of Corollary[2.13, Part (a): setting a = 0 gives By'[0,4] = (—1)'Fa;,
which is odd since v (FEs;) = 0.

Part (b): setting a = i gives B;,l [i,1] = (g;)EO =1.

Part (c): by Theorem [2.9, By'[a,i] depends only on a and i, not on N.

Part (d): by Corollary[2.10, maxo<,<; carries(a,i—a) = |log, ] (achieved
when a and i — a have maximal carry count in binary addition). ([l

7. CONNECTION BETWEEN THE RESULTS

The proofs of Theorems and all depend on the same primi-
tive: the interaction between 2-adic valuations and binary carry counting in
binomial coefficients.

Specifically, in Lemma the key estimate

2r r
U2(2b+1> = 1+v2<b> + va(r —b)

reduces to vz(y) = carries(b,r — b) by Kummer’s theorem. The iden-
tity (3)(r — b) = r(rgl) then shows that the minimum is achieved when
carries(b, 7 — b) is minimized, i.e., when b=0or b =r — 1.

In the binomial core matrix, the same mechanism operates transparently:
the inverse By'[a,i] = (—1)""® (223) FEjy(;—q) factors into a binomial coefficient
(whose vy is a carry count) and an Euler number (which is a 2-adic unit).
The carries formula vo(By'[a,4]) = carries(a, i — a) then gives the complete
2-adic structure.

In Theorem the lower triangular matrix L (the T part of Zagier’s
formula) has diagonal valuations vy(L[a,a]) = va(i 4+ 1) — 2i, which directly
inverts to give the row minimum formula 2i — v3(i + 1) for L=!. The pertur-

bation by the upper triangular 7T} term does not lower these minima because
va(L7U) > 1, as shown in Lemma

8. DISCUSSION AND OPEN QUESTIONS

Theorem provides a partial answer to the question of the full 2-adic
structure of (Mx)~!: we now know the minimum valuation in each row.
However, the complete picture remains open.
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Question 8.1 (Full 2-adic structure of (Mg )~1). What is the 2-adic valuation
of all entries of (My)~'? Computation suggests that the lower triangular
part (where the T term of L~! is nonzero) satisfies
. . ) K—-1-m

vg(Mgl[K—l—z,m])—21—1}2(@—1—1)—}—112( ) > €im
where €, > 0 is a correction term that vanishes for K € {2,3,5,9} (when
K — 1 is a power of 2) but is positive for other K. Can this correction be
characterized?

Question 8.2 (Odd primes). Does similar structure exist for odd primes p?
By Kummer’s theorem, v, (m;;") = carries,(m, n) counts p-adic carries. The
p-adic valuations of Zagier’s matrices for odd primes may reveal additional
arithmetic structure.

Question 8.3 (Motivic interpretation). The 2-adic properties of Zagier’s ma-
trices were essential in Brown’s proof [I] of the Hoffman conjecture. Can the
carries formula for B;,l be given a motivic interpretation, perhaps in terms
of the action of the motivic Galois group on the relevant component of the
category of mixed Tate motives over Z7

Question 8.4 (Connection to g-zeta functions). The matrix By also appears
in the study of Habiro’s g-series and completed g-zeta functions, where a
triangular inversion with analogous 2-adic structure is required. In that
setting, the generating function ¢(g) = e/(ef — 1) = . Bpe®/k! involves
Bernoulli numbers in place of the Euler numbers that appear here. Since
va(Bak) = —1 by the von Staudt—Clausen theorem while vo(FEs;) = 0, the
Habiro setting has a richer 2-adic structure. Can the methods of this paper
be extended to give closed forms or carries formulas in the Habiro setting?
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